
R2.01 : Object-oriented

development (OOD)

Coordinator : Isabelle Blasquez

My name: Cristina Onete

cristina.onete@gmail.com

Slides : https://www.onete.net/teaching.html

Input and output streams

The java.io package

 Input/output streams are essential in Java

❖ Such streams are unidirectional

❖ There are multiple input sources and output destinations in Java

❖ Input sources: keyboard input, file, network input, input from another program

❖ Output destinations: Java console, file, another program, output on network

 Two types of streams : binary and character streams

Source :

https://www.ntu.edu.sg

Binary Streams in Java

Source:

https://o7planning.org/

Character streams

Source:

https://o7planning.org/

Reading a text file

 A correct manipulation of files in Java involves:

 Correctly opening files

 With a correct treatment of possible exceptions, including FileNotFound

 Manipulation (for instance read/write operations)

 Correctly closing the files

 All files must be closed after use

 In particular: even if an error occurs or an exception is triggered, the file must

be correctly closed while the execution proceeds!

 Let's look at these steps one by one

Opening and reading a file

 A file can be read with a fileReader

❖ We will use the constructor of class FileReader with the signature

public FileReader(String fileName)

throws FileNotFoundException

❖ The methods in which we instantiate the FileReader must take into account the

exceptions!

 Useful methods in class FileReader:

❖ public int read(): reads a single character, throws an IOException

❖ public int read(char[] buffer) : readers characters from a character array

better efficiency, throws an IOException

Closing a file

 Always close files when you've
finished using them

 2 ways of doing this:

❖ the finally block of a try-catch-
finally block is always run

❖ Since Java 7 try-catch suffices,
due to the interface
java.lang.Autocloseable

 an interface implemented by
most readers/writers and I/O
streams

 However, it is still a good idea
to concretely close the files

import java.io.*;

public class Reading{
public static void main(String[] args){

try (FileReader reader = new
FileReader("C:/Documents/File.txt")) {

// read character by character
int character;
while ((character = reader.read()) != -1)

System.out.print((char)character);
}
catch(IOException e) {

e.printStackTrace();
}

}

Optimising reading

 Reading character by

character is inefficient

 To improve efficiency

we can read windows

of several characters at

a time

❖ We can choose the

window size

 For large file, the

second method can

make all the difference

import java.io.*;

public class Reading{
public static void main(String[] args){

try{
FileReader reader = new

FileReader("C:/Documents/File.txt");
char[] window = new char[128];
while ((reader.read(window)) != -1){

for (int i=0; i<128; i++){
System.out.print(window[i]);

}
}

}
catch(IOException e) {

e.printStackTrace();
}

}

Writing to a file

 Use a file writer: FileWriter

 Two interesting FileWriter constructors:

❖ public FileWriter(String filename) : throws IOException

❖ public FileWriter(String filename, boolean append) : throws IOException

 if append == true, then the input data is written at the end of the file;

oterwise they are written at the start of it

 very useful in a log or in a file in which order is important

 We can end the line and start on a fresh line by using "\n".

Writing into the file

import java.io.*;

public class Writing{
public static void main(String[] args){

try{
FileWriter writer = new FileWriter("C:/Documents/File.txt", true);
writer.write("I'm continuing to write in this file \n and here is the rest

of my sentence");
}
catch(IOException e) {

e.printStackTrace();
}

}

Of further use...

 The BufferedReader class optimizes reading for files

 Class File

 More information :

 https://docs.oracle.com/javase/7/docs/api/java/io/BufferedRea

der.html

 https://docs.oracle.com/javase/7/docs/api/java/io/File.html

Exceptions

What is an exception?

 An exception is an object (instance of a class modelling it)

 An exception is instantiated whenever some event interrupts

the normal flow of an algorithm

 An exception can appear when a program halts, or upon some

aberrant flow

Some errors can be anticipated and the program, modified to

account for them

Others are harder to spot and can lead to premature halts

Different kinds of exceptions

 Error:

 Terminal exception: halts the program entirely

 Errors signal the existence of a serious flaw and

we must let the program halt if they occur

 VirtualMachineError, OutOfMemory, ...

 Exception:

 Less serious than an error, but can still create

some problems

 Two kinds: exceptions at compilation, exceptions

at runtime

 IOException, SQLException, NullPointerException

Java.lang.Object

Java.lang.Throwable

Java.lang.Error Java.lang.Exception

Exceptions are thrown...

 If a technical failure interrupts the flow of the program

 For instance if an index falls out of bounds (in an array)

IndexOutOfBoundsException

 Or if the Java virtual machine encounters some error:

OutOfMemoryError

 If an application failure interrupts the flow of the program

 For instance if the program tries to access an inexistent file:

FileNotFoundException

Throwing exceptions

 Keyword: throw

 Raise exception in if statement:

 We can also do it in a "try-catch" block:

if (age > 99){
throw new RuntimeException("My students

can't be that old!");
}

try{

// code we ideally want to run

}

catch (FileNotFoundException e) {

// in case the file doesn't exist, Java will raise an exception

}

What's the difference ?

Checked and unchecked exceptions

 Exceptions can be checked or unchecked

 Checked exceptions:

❖ Exceptions which Java knows can occur in particular circumstances

❖ For instance: when trying to open a file that doesn't exist, Java is able to throw
a FileNotFoundException

❖ The possibility of such an exception is anticipated by the compiler, which
instructs the user to provide for it (typically try-catch)

 Unchecked exceptions:

❖ Exceptions raised at runtime, can be caused by some errors or an abnormal
program flow

❖ Example: NullPointerException

Intermezzo: null

Null references

 NullPointerException:

❖ Raised when Java stumbles on an object that does not exist

❖ For instance the undefined (but existing) n-th element of an array

 How can we prevent this?

❖ Check if the object exists: if(object == null){...}

❖ a try-catch block around the code involving the exception

 Careful: null is not an object!

❖ We do not use object.equals(null) or null.equals(object)

❖ The latter even yields a NullPointerException!

End of Intermezzo

Checked exceptions

 Can be checked within a method directly (in a try-catch block)

 Or we can check it when we use the method (at call-time)

public FileReader read(String filePath) {
try{

return (new FileReader(filePath));
} catch (FileNotFoundException e){

//treatment of exception
}

}

public FileReader read(String filePath) throws
FileNotFoundException{

// ... some code
return (new FileReader(filePath));

}

Try-catch blocks

 Try-catch blocks consist of :

❖ An original try block, in which we write the code we would like to run

❖ A first catch block indicating what to do when throwing a first exception

❖ We can have multiple catch blocks

▪ In that case, we are treating exceptions in reverse hierarchy

▪ Subclasses before superclasses: NullPointerException before

RuntimeException

 Optionally, we can have a finally block:

❖ Always executed, even if an exception was thrown previously

❖ Allows us to close open processes (for instance if a file is open)

Handy instructions

 System.err.println(String): a method that allows us to print (in red) a text

that is meant to be printed when an exception is thrown

 printStackTrace(): method that can be run for any instance of a class that

implements the interface Throwable; when called, this method tracks the

cause of the error or exception that was thrown

Example: index out of bounds

Check out this code

Lors d'une execution normale

Let's add an arror

changed size of array

Throw exception

try-catch block

Java looks out for an

IndexOutOfBounds exception

exception is thrown

Tracking down the source of the error

System.out.println replaced by

System.err.println

tracks down error

Tracking down the source of the error

A finally block

Making our own exceptions

Catching new errors

 Remember this example?

 Here, we are throwing an exception which is not normally

speaking an exception: an age larger than 99

 In this example we throw a generic RuntimeException...

❖ Could we be more specific and create our own exception ?

if (age > 99){
throw new RuntimeException("My students

can't be that old!");
}

Create a new exception

 We can, in fact, create new exceptions in Java, which will inherit

from superclasses of exceptions:

 Checked exceptions inherit from class Exception

 Unchecked exceptions inherit from class RuntimeException

 The new exception will be a new class, with attributes and methods

GP1: Do not create a new Java exception if you can use existing ones!

Example: StudentTooOld

public class StudentTooOldException extends RuntimeException{
// customized constructor using the superclass constructor
public StudentTooOld(String m){

super(m); // we will use the constructor of RuntimeException
}

}

public class MainClass{
public static void main(String[] args) {

Student anneLeclerc = new Student();
if (anneLeclerc.getAge() > 99){

throw new StudentTooOldException("This student is too old!");
}

}
}

Other good practices

 Crucial to catch the exceptions potentially touching our code

 Try-catch-finally blocks have special structures

GP2: Use the best approximation you can have of your exception

(subclass rather than Exception/RuntimeException directly)

GP3: Do not use catch blocks as regular else blocks in the code!

GP4 : Never raise an exception using a return statement

Questions ?

	Slide 1: R2.01 : Object-oriented development (OOD)
	Slide 2: Input and output streams
	Slide 3: The java.io package
	Slide 4: Binary Streams in Java
	Slide 5: Character streams
	Slide 6: Reading a text file
	Slide 7: Opening and reading a file
	Slide 8: Closing a file
	Slide 9: Optimising reading
	Slide 10: Writing to a file
	Slide 11: Writing into the file
	Slide 12: Of further use...
	Slide 13: Exceptions
	Slide 14: What is an exception?
	Slide 15: Different kinds of exceptions
	Slide 16: Exceptions are thrown...
	Slide 17: Throwing exceptions
	Slide 18: Checked and unchecked exceptions
	Slide 19: Intermezzo: null
	Slide 20: Null references
	Slide 21: End of Intermezzo
	Slide 22: Checked exceptions
	Slide 23: Try-catch blocks
	Slide 24: Handy instructions
	Slide 25: Example: index out of bounds
	Slide 26: Check out this code
	Slide 27: Let's add an arror
	Slide 28: Throw exception
	Slide 29: Tracking down the source of the error
	Slide 30: Tracking down the source of the error
	Slide 31: Making our own exceptions
	Slide 32: Catching new errors
	Slide 33: Create a new exception
	Slide 34: Example: StudentTooOld
	Slide 35: Other good practices
	Slide 36: Questions ?

