
R2.01 : Object-oriented

development (OOD)

Coordinator : Isabelle Blasquez

My name: Cristina Onete

cristina.onete@gmail.com

Slides : https://www.onete.net/teaching.html

Brief reminder:

class diagrams

A means of summarizing a class

 A class diagrams indicates the class attributes and method signatures

 Why would we want to represent classes in this fashion?

ClassName

Attributes

Methods

- attributeName : <variableType>

+ methodName(<parameter_types>): <return_type>

To get some perspective on the code

To better design one's code

To precisely specify what the code does

To understand how to properly test the code

private attribute

public

Example

public class Student{
private String lastName;
private String firstName;
private String[] classes; // student's classes
private int[] grades; // student's grades

public Student(String lastName, String
firstName, String[] classes){

this.lastName = lastName;
this.firstName = firstName;
this.classes = classes;
grades = new int[classes.length];

}

public void addGrade(String class, int grade){
// adds new grade for target class

}
}

Student

- lastName : String

- firstName : String

- classes : String[]

- grades : int[]

+ Student(lastName : String,

firstName : String, classes : String[])

+ addGrade(class : String, grade :

int) : void

Inheritance

Objects with similar characteristics

 Take the example of these blocks:

❖ They can be inserted within the larger cube, moved, etc.

❖ Let's consider the following shapes

❖ One can build by turning those shapes around

❖ Say some shapes also come with bells and make special sounds

= CLING CLING

Objects with similar characteristics

 Similar characteristics

❖ They are all types of blocks

❖ They come in shapes

❖ They can be turned around

 Different characteristics

❖ The shapes differ

❖ Some blocks make sounds

 Code refactoring: bunch similar characteristics together

Class Cube{

...

public void turnAround (int x){

// turns cube around by x degrees

...

}

}

Without inheritance

Class Star{

...

public void turnAround (int x){

// turns cube around by x degrees

}

public void makeSound(){

// makes sound CLING CLING

}

}

Duplicating code

 ... is a really bad idea

 For instance: the method turnAround(int x) in classes Cube and Star

 Why a bad idea ?

New code might be incompatible with old code (think attributes, variables...)

Multiple instances of a copied bug must be debugged and resolved separately

Useless: An instance of the copied code might be solving an issue already

solved in existing code

Inheritance in Java

 A means of representing in code the concept "is a type of"

 Inheritance starts from a superclass

❖ Which describes common characteristics:

➢ Attributes: shape name, colour

➢ Methods: void turnAround (int x)

❖ Here the superclass is Block

 Next step: introduce subclasses inheriting from the superclass:
Cube, Star, Triangle, Trapezium

= types de blocs

Factorisation vs. conceptual differences

 Our example includes blocks with common features:

 Attributes: each block has a shape, a colour

 Methods: turnAround: all blocks can be turned around

 How about the method void makeSound()?

The method makeSound is specific exclusively to star blocks

Cubes, stars, etc. inherit these general block characteristics

Inheritance and private visibility

 In superclass Block:

❖ Attributes: shapeName, colour

❖ Attributes declared, but not instantiated

 Triangle subclass inherits from Block:

❖ No need to mention shapeName, colour: they are inherited automatically

❖ Attribute instantiations (in constructor)

 shapeName set to "triangle", colour set to "green"

 Need to reference in subclass the (private) attributes of superclass

public class Block{

private String shapeName;

private String colour;
}

HOW ?

Private, public, protected

 Private vs. public attributes (reminder):

❖ Public attributes are visible everyone in the program

❖ Private attributes can only be referenced directly from within their class

❖ Getters and setters are required to handle private attributes

 Protected attributes (in superclass):

❖ Can be referenced directly from the class and its subclasses

classe sousclasse ailleurs

public

private

protected

Often attributes private in superclasses (use getters/setters)

Methods are more often given protected visibility

Example: superclass Block

public class Block{

protected String shapeName;

protected String colour;

public Block(String shapeName, String colour){

this.shapeName = shapeName;

this.colour = colour;

}

public void turnAround (int x){

// code for turning shape around

}

}

Example: subclass Cube

public class Cube extends Block{

// subclasses inherit all the methods and attributes of a superclass

// Problem #1: the constructor(s)

}

 A constructor of class Block bears the name of its class: Block

 A constructor of Cube must be called Cube, not Block

 Could we rely on the constructor by default (inherited from Java.lang.Object) ?

❖ On the bright side: constructor already exists

❖ Unfortunately: superclass Block has a constructor, which Cube inherits...

❖ Thus, subclass Cube cannot use the constructor by default

keyword "extends" specifies an inheritance

Constructors in the subclass

 We use and adapt the constructor of the superclass

public class Block{

...

public Block(String shapeName,
String colour){

this.shapeName = shapeName;
this.colour = colour;

}
}

public class Cube extends Block{

public Cube(){

// call constructor in superclass

super("cube", "blue");
}

}

Keyword "super" refers to superclass

Every time we use the constructor of Block inside class Cube,

we will use the keyword super !

super("cube", "blue") calls constructor Block(String, String)

Inheritance and duplication of code

public class Block{
protected String shapeName;
protected String colour;

public Block(String shapeName,
String colour){

this.shapeName = shapeName;
this.colour = colour;

}

public void turnAround (int x){
// code for turning around

}
}

public class Cube extends Block{
public Cube(){

super("cube", "blue");
}

}

Class Cube has:

• two inherited attributes: shapeName, colour

• a constructor, whose signature is Cube();

• inherited method turnAround(int)

A subclass can modify a method it inherits...

But unless that is the case, the method will behave as in superclass

Inheritance in class diagrams

 Indicated by an arrow from the subclass towards the superclass

❖ Inherited methods not featured in subclass, unless modified

public class Block{
protected String shapeName;
protected String colour;

public Block(String shapeName, String colour){
// constructor code

}

public void turnAround (int x){
// code for method turnAround

}
}

public class Cube extends Block{
public Cube(){

// constructor code
}

}

Block

shapeName : String

colour : String

+ Block(shapeName : String,

colour : String)

+ turnAround(x: int) : void

Cube

+ Cube()

Polymorphism

Use-case: BlockSet

 A cube is a type of block. So is a star.

 Usually, blocks come in sets

❖ Depending on size, each set contains a number of blocks of each type

❖ More advanced: each set has a random number of blocks of each type

 In Java block sets become a class BlockSet:

❖ characterized by an attribute setSize (type char, values in 'S', 'M', or 'L')

❖ an array of blocks, which can be cubes, stars, triangles, or trapeziums

➢ What would be the type of this array?

Polymorphism

 Poly + morphos = many shapes

 Notion in Java that groups together objects of different types

❖ cats, wolves, and people are animals

❖ cubes, stars, and triangles are blocks

 Is enabled by inheritance or interfaces (next CMs)

❖ Inheritance: use supertype as common type

❖ A set of Block objects could contain Cube objects, Star, objects, etc.

BlockSet example

 Small block set: setSize = 'S'

❖ Contains one block of each type

 Medium block set: setSize = 'M'

❖ Contains 2 stars, 2 cubes, 1 triangle, and one trapezium

 Large blockset: setSize = 'L'

❖ Contains 4 cubes, 3 stars, 2 triangles, 1 trapezium

Example implementation
public class BlockSet{

protected char setSize; // values 'S', 'M', 'L'
protected Block[] blocks;

public BlockSet(char setSize){
this.setSize = setSize;
if (this.setSize == 'S'){

this.blocks = {new Cube(), new Triangle(),
new Star(), new Trapezium()};

}
if (this.setSize == 'M'){

this.blocks = {new Cube(), new Cube(), new
Triangle(), new Star(), new Star(), new Trapezium()};

}
if (this.setSize == 'L'){

this.blocks = {new Cube(), new Cube(), new
Cube(), new Cube(), new Triangle(), new Triangle(), new
Star(), new Star(), new Star(), new Trapezium()};

}
}

}

polymorphic array

4 blocks, one of each

shape

Intermezzo: enums

Java enums

 An enum is a data type in Java, specifying a set of predefined values

 For instance, Pokemon types could be stored in an enum

❖ Or the setSize of BlockSet objects

 The alternative to using enums is checking validity of parameter

public enum SetSize{
S,M,L

}

public class BlockSet{
protected SetSize setSize;
protected Block[] blocks;

public BlockSet(SetSize setSize){
this.setSize = setSize;
if (this.setSize.equals(SetSize.S)){

this.blocks = {new Cube(), new Triangle(),
new Star(), new Trapezium()};

}
// ... rest of code

}
}

More Java enums

 Enums can be complex

 They can have attributes, contain methods, etc.

 Curious ? Have a look here :

https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

End of intermezzo

Polymorphism and types

 Recall: objects are declared, then instantiated

Pokemon piplup = new Pokemon("Piplup", "WATER", 5);

 Polymorphic objects are also declared and instantiated

❖ Crucial question: declared type and instantiated type

Block blockStar = new Block("star", "yellow");

Block polyStar = new Star();

Star trueStar = new Star();

 Let's have a look at each of these objects

BlockStar

Block blockStar = new Block("star", "yellow");

 Declared type: Block

❖ object can be included in data structure that includes blocks (e.g. Block[])

❖ object can only use methods declared in the Block class

 Instantiated type: Block

❖ object uses the methods as they are written in Block class

PolyStar

Block polyStar = new Star();

 Most typical case in polymorphism

 Declared type: Block

❖ object can be included in data structure that includes blocks (e.g. Block[])

❖ object can only use methods declared in the Block class

 Instantiated type: Star

❖ object uses the methods as they are written in Star class (fallback Block)

TrueStar

Star trueStar = new Star();

 Declared type: Star

❖ object can be included in data structure that includes blocks (e.g. Block[])

❖ object can only use methods declared in the Star class

 Instantiated type: Star

❖ object uses the methods as they are written in Star class

Methods and polymorphism

Block blockStar = new Block("star", "yellow");

Block polyStar = new Star();

Star trueStar = new Star();

 Methods specific to the Star class, non-existent in Block

❖ Usable only by trueStar

 Methods existent in Block, but rewritten in Star

❖ Usable by polyStar and trueStar

 Methods existent in Block, inherited as-is in Star

❖ Usable by all three

How can we make polyStar able to use the method makeSound() ?

Method 1: Add "artificial" method

Block

shapeName : String

colour : String

+ Block(shapeName : String,

colour : String)

+ turnAround(x : int) : void

+ makeSound() : void

Star

+ Star()

+ makeSound() : void

public class Block{
...

public void makeSound(){

// Leave method empty
}

}

public class Star extends Block{
...

@Override

public void makeSound(){

System.out.println("Cling cling!");
}

}

Indicates (in code) the fact that this

code replaces code from superclass

Abstract classes, abstract methods

Abstract classes

 An abstract class is non-instantiable

❖ That is, a class for which we cannot directly create objects

 A subclass can inherit from an abstract superclass !

❖ The abstract superclass can contain attributes and methods

 Including a constructor!

 Some methods concrete, others, abstract

 Abstract method: just the signature, followed by ; (no details)

❖ Concrete subclasses must detail all the abstract methods of the superclass

What is the use of such classes ?

Method 2: polyStar using makeSound()

Block

shapeName : String

colour : String

+ Block(shapeName : String,

colour : String)

+ turnAround(x : int) : void

+ makeSound() : void

Star

+ Star()

+ makeSound() : void

public abstract class Block{
...

public abstract void makeSound();
}

public class Star extends Block{
...

@Override

public void makeSound(){

System.out.println("Cling cling!");
}

}

Italics => abstract method/class

keyword: abstract

Polymorphism & abstract methods

 Using abstract classes:

❖ Objects can have Block as declared type...

❖ ... but not instantiated type

 Abstract classes allowed to contain only concrete methods

❖ A class is abstract if it should never be instantiated as-is

Block

shapeName : String

colour : String

+ Block(shapeName : String,

colour : String)

+ turnAround(x : int) : void

+ makeSound() : void

Star

+ Star()

+ makeSound() : void

Block blockStar = new Block("star", "yellow");
Block polyStar = new Star();
Star trueStar = new Star();

Any questions ?

	Slide 1: R2.01 : Object-oriented development (OOD)
	Slide 2: Brief reminder: class diagrams
	Slide 3: A means of summarizing a class
	Slide 4: Example
	Slide 5: Inheritance
	Slide 6: Objects with similar characteristics
	Slide 7: Objects with similar characteristics
	Slide 8: Without inheritance
	Slide 9: Duplicating code
	Slide 10: Inheritance in Java
	Slide 11: Factorisation vs. conceptual differences
	Slide 12: Inheritance and private visibility
	Slide 13: Private, public, protected
	Slide 14: Example: superclass Block
	Slide 15: Example: subclass Cube
	Slide 16: Constructors in the subclass
	Slide 17: Inheritance and duplication of code
	Slide 18: Inheritance in class diagrams
	Slide 19: Polymorphism
	Slide 20: Use-case: BlockSet
	Slide 21: Polymorphism
	Slide 22: BlockSet example
	Slide 23: Example implementation
	Slide 24: Intermezzo: enums
	Slide 25: Java enums
	Slide 26: More Java enums
	Slide 27: End of intermezzo
	Slide 28: Polymorphism and types
	Slide 29: BlockStar
	Slide 30: PolyStar
	Slide 31: TrueStar
	Slide 32: Methods and polymorphism
	Slide 33: Method 1: Add "artificial" method
	Slide 34: Abstract classes, abstract methods
	Slide 35: Abstract classes
	Slide 36: Method 2: polyStar using makeSound()
	Slide 37: Polymorphism & abstract methods
	Slide 38: Any questions ?

