
R2.01 : Object-oriented

development (OOD)

Coordinator : Isabelle Blasquez

My name: Cristina Onete

cristina.onete@gmail.com

Today's main goal

Concepts Java

❖ Classes, attributes

❖ Variable types, primitive/non-primitive

types, public vs. private

❖ Syntax: classes and attributes

❖ Instantiation, objects,

constructors

❖ Basic variable manipulation

❖ Constructor syntax and class instantiation

❖ Multiple classes, main method

❖ Main method syntax

❖ Re : public vs. private variables

❖ Using methods & attributes outside class

❖ The String toString() method

Learn to write basic Java code for a basic application

Java: short history

James Gosling, Mike Sheridan, Patrick Naughton embark on

the quest of developing Java

Sun Microsystems adheres to the "Write Once Run Anywhere"

paradigm : a reference implementation of Java by Sun

Java 2 released, including J2EE (today Jakarta EE) for distri-

buted computing/web services; J2ME for mobile applications

 1991 :

 1995 :

 1998-1999 :

J2 SE

(standard)

J2 EE

(entreprise)

J2 ME

(micro)

 2007 :

 2010 :

Java makes its code open-source (GNU GPL license)

Oracle buys Java. Today, Java is all around us.

Java's main design goals

Simple, object-oriented, and familiar

Robust and secure

Architecture-neutral and portable

It must execute with high performance

Interpreted, threaded, and dynamic

source: Design Goals of the Java programming language, Oracle 1999

Is Java different from other programming languages ?

Java vs. C and C++

 Imperative language (C, C++)

• Relies on functions and

procedures

• Programs consisting of function

definitions and function calls

• Each function caracterised by

"signature": I/O types, name

• Local and global variables

 Object-oriented language (Java)

• Object oriented, using classes

• Objects instantiate classes; they

have their own attributes and

methods

• Methods caracterised by

signatures, associated to classes

• All variables local (to methods,

classes, etc.)

Java is also verbose !

Basic Java syntax

Classes and objects (reminder)

 Class: an abstract representation (or model) of a concept

❖ Examples: "Student", "Animal", "Computer", "Pokemon"…

❖ Contains attributes and methods

Pokemon

Attributes

Variables that characterize the class

Classes and objects (reminder)

 Class: an abstract representation (or model) of a concept

 In Java, each object instantiates the class that defines it

 Each object is unique and must be customized

Attributes

name

Piplup type

water

level

5

Classes and objects (reminder)

 Class: an abstract representation (or model) of a concept

 In Java, each object instantiates the class that defines it

 Each object is unique and must be customized

Attributes

name

Piplup type

water

level

5

GP1 (Convention): class starts with capital letter, object starts with lowercase

ex: Pokemon vs. a pokemon

Classes and objects (reminder)

 Class: an abstract representation (or model) of a concept

 In Java, each object instantiates the class that defines it

 Each object is unique and must be customized

Attributes

name

Piplup type

water

level

5

Let's have a look at variables in Java!

Java variables: a howto

 Four steps in handling variables in Java:

1. Declaring variables: visibility, type, name are stated

2. Instantiation: create an object (special method: constructor)

3. Assignment (initialisation): a first value is assigned to a variable

4. Modification/ré-assignement : cette valeur peut ensuite être modifiée

Simultaneous declaration + instantiation:
Pokemon piplup = new Pokemon("Piplup", "eau", 5)

private String name; private Pokemon piplup;

Pokemon piplup; piplup = new Pokemon("Piplup", "Eau", 5);

name = "Piplup"; age = 7;

name = "Rowlet"; piplup = new Pokemon("Rowlet", "Herbe", 10);

Variable types in Java

 Primitive types (8 in total!) :

❖ start with lowercase letters

byte, short, int, long – 8-, 16-, 32-, 64-bit long integers

float, double – decimal numbers, written with a dot: 3.4, 1.7, ...

char – 1 character, written between apostrophes: 'c', 'd', ...

boolean – true/false

 Non-primitive types (Java classes):

❖ String – character strings, written between inverted commas: "Piplup"

❖ Arrays: a data structure

❖ All other objects

Three types of variables

 Case 1: class attributes (ex: name is an attribute of Pokemon)

❖ Declared at beginning of the class description (usually not instantiated)

❖ Each attribute has a visibility: public, private, protected, ...

private String name; private int level;

❖ Personalisable by each instance (each object)

ex : each pokemon has a name, each has a level

 Case 2: special static attributes

Three types of variables

 Case 1: class attributes (ex: name is an attribute of Pokemon)

❖ Declared at beginning of the class description (usually not instantiated)

❖ Each attribute has a visibility: public, private, protected, ...

❖ Personalisable by each instance (each object)

 Case 2: special static attributes

 Case 3: other variables (appearing in and local to methods)

❖ Do not exist outside the environment for which they are defined

❖ Declared before/upon first use

❖ Using undeclared variables triggers an error of compilation

Intermezzo : compilation error

What is a compilation error ?

 Two types of errors in Java code : compilation and execution errors

 Compilation errors: code that is syntactically wrong

❖ Like spelling or grammatical errors in French/English languages

❖ The IDE detects those errors and signals it to the user

 Execution errors: code that is wrong for some particular exécution

❖ Sentences that do not make sense in a text

❖ The IDE cannot detect them, and they can crash the code

❖ Can be treated by using exceptions

Errors: examples

 Compilation errors:

❖ Using variables without declaring them

❖ Bad use of code syntax, semicolons, etc.

❖ Incorrect references to variables, etc.

❖ ...

 Execution errors:

 Reading from or writing to a non-existent file

 Referencing beyond the size of a data structure (like an array)

 ...

End of intermezzo

 Assignment:

 Printing a primitive variable:

 Testing equality (primitive types): returns a boolean

String pokemonName = "Piplup"; int level = 5;

Basic Java instructions for variables

; at end of line

== : Equality test

= : assignment

Caution : non-primitive types do not work like primitive types !

For Strings: String a = "un string";
String b = "un string";
(a == b);

Comparing objects: use a.equals(b) !

Exceptionally usable for String variables

Later: how to use this for other objects
System.out.println(<variableName>);

int a=2; int b=3; boolean equality = (a == b);

Operations using variables

 Addition and subtraction :

❖ numeric types: + is addition, - is subtraction,

❖ boolean type: + and - do not apply

❖ String : + indicates the concatenation of strings

 Multiplication and division (* and /) : only numeric types

❖ The result of dividing two integers is an integer by default. Java rounds

the result automatically: 7/2 = 3

❖ Obtain a correct result cast the type to a more suitable one

System.out.println("Pip" + "lup"); >> Piplup Caution : we do not use + on chars !

double result = (double) 7/2;

Variables and logic

 Boolean variables can be used with logical operators:

❖ Negation: true → false and false → true;

 Syntax : !<variable> or !(<value>) or !=

 !(a == b) is the same as (a != b)

❖ Logical OR: true/false OR true → true; false OR false → false

 Syntax : <boolean1> || <boolean2>

 Can apply to variables or expressions

❖ Logical AND: true/false AND false → false; true AND true → true

 Syntaxe : <boolean1> && <boolean2>

boolean isEqual;
isEqual = !(2==3);
System.out.println(isEqual);
System.out.println(5 == 6);

>> true

>> false

boolean isEqual = (2!=3) || (5 == 6);
System.out.println(isEqual); >> true

boolean isEqual = (2!=3) && (5 == 6);
System.out.println(isEqual); >> false

More advanced Java syntax

Strings

 String is a Java class, defining a type – hence the capital letter

 Strings are a special type, as they can be handled:

❖ Similarly to primitive variables:

❖ As complex objects :

String pokemonName;
pokemonName = "Piplup";

String pokemonName;
pokemonName = new String("Piplup");

GP2 : We will typically use the first of these methods...

... but we will remember that String is not a primitive type!

Arrays

 An array is an object which represents a collection of other objects

❖ One main attribut: its length (# of objects contained)

 Use :

1. Declaring an array : <type>[] <name>

2. Instatiation: compulsory (exception on next page)

❖ Defines length: <name>=new <type>[<length>]

❖ Arrays are indexed, from 0 to (length – 1) :

double[] grades; Pokemon[] myPokemons;

myPokemons = new Pokemon[6]

myPokemons[0] myPokemons[1] myPokemons[5]...

Arrays

 An array is an object which represents a collection of other objects

 One main attribut: its length (# of objects contained)

 Use :

1. Declaring an array : <type>[] <name>

2. Instatiation: compulsory (exception on next page)

❖ Defines length: <name>=new <type>[<length>]

❖ Arrays are indexed, from 0 to (length – 1) :

3. Assignment: three ways:

❖ Instantiation + assignment:

❖ Implicit length by assignement:

❖ Element by element:

double[] grades=new double[3];
grades={12.0, 16.5, 13.0};

double[] grades = {12.0, 16.5, 13.0};
int[] ages = new int[]{18,25}

double[] grades = new double[3];
grades[0]=12.0;
grades[1]=16.5;
grades[2]=13.0;

Operations with arrays

 Array elements "borrow" all operations belonging to their types:

 Ex.: the elements of a String[] can use any operation native to Strings

❖ comparison: <string1>.equals(<string2>)

❖ + allows the concatenation of Strings

❖ = is used for assignment -- remember also to use the inverted commas " "

 Arrays can also be manipulated on their own:

 However, such operations should be handled with care!

double[] myGrades = {12, 10, 15.6};
double[] yourGrades = myGrades;
myGrades[2] = 13;
System.out.println(yourGrades[2]);

Modify myGrades[2]

Initialise myGrades

set yourGrades = myGrades

>> 13

Why ??

Variables stored in memory

 Every variable and every object is stored in memory:

 This also holds for objects:

 Assignment:

int a;
a

address in memory, ex. 15db9742

a = 5; 5
a

Pokemon piplup;
piplup address in memory

attributes of

variable piplup

Les variables ont deux adresses différentes

Pokemon piplup = new Pokemon("Piplup",
"WATER", 5);
Pokemon rowlet = new Pokemon("Rowlet",
"AIR", 7);
System.out.println(rowlet.getLevel());

row

let
air 7

piplup

rowlet

pip

lup
wa

ter
5

>> 7

Variables stored in memory

 Every variable and every object is stored in memory:

 This also holds for objects:

 Assignment:

int a;
a

a = 5; 5
a

Pokemon piplup;
piplup

Les variables ont deux adresses différentes These variables share an addresss

Modifying one changes the other

Pokemon piplup = new Pokemon("Piplup",
"WATER", 5);
Pokemon rowlet = piplup;
piplup.setLevel(7);
System.out.println(rowlet.getLevel());

piplup

rowlet

pip

lup
wa

ter
5

>> 7

Conditional execution (if-then-else)

 Syntax:
if (<test>) {

// instructions separated by ";"
}
else {

// instructions separated by ";"
}

 One instruction => curly brackets {} are not compulsory

GP3 : properly indent your code (indentation is 2 to 4 characters)

GP4 : use the curly brackets! (we always will)

in-code comment

(compiler disregards text on same line after //)

if (2==3){
System.out.println("Blue pill.");

}
else {

System.out.println("Red pill.");
}

While loops

 Syntax

while (condition) {

// instructions separated by ";"

}

 Remember to increment the iterator

// compute 1+2+...+100

public int sum1to100(){
int result = 0;
int i = 1; //iterator
while (i <= 100){

result +=i;
i++;

}
return result;

}

stand-alone method

(in a class)

return type : int

visibility : public

iterator local to method

For loop

 Syntax:

for (<start condition>; <stop condition>; <incrementation>) {

// instructions separated by ";"

}

 Remember to declare the iterator !

// compute 1+2+...+100

public int sum1to100(){
int result = 0;
for (int i=1; i<=100; i++){

result +=i;
}
return result;

}

Methods in Java

Why methods?

 Java methods allow us to:

❖ instantiate classes (special method called a constructor)

❖ initialize or modify the values of an attribute

❖ do a computation on the attributes in a class

❖ obtain a result, such as printing on the screen

❖ ...

 All methods in Java are included in classes

❖ Most methods in a class are run "by" (or for) given instances of that class

❖ An exception is using a static method

Attributes and methods

 Here's a Pokemon class:

❖ Attributes go at the top

❖ Method 1: Pokemon (constructor)

Allows to instantiate pokemons

❖ Method 2: levelUp

Modifies an attribute

❖ Method 3: getName (a getter)

Retrieves attribute (level)

❖ Method 4: toString

Special role we will see later

What's the

difference ?

Variables, attributes, parameters

 Attributes:

❖ Variables that characterize a class

❖ Declared at the top of the class

❖ Instantiated in constructor

 Parameters:

❖ Variables input to methods

❖ Symbolic at method declaration

❖ Each call to method personalises them

 Other variables:

❖ Local to methods

❖ Used for storage, iteration

Attributes, methods, and parameters

 Methods in Java appear in two places:

❖ When they are defined (inside their class)
❖ When they are used (inside our outside class)

 Defining (describing) methods:

❖ Optionally use a number of parameters
❖ Tell us output type
❖ For concrete methods: write out the code

 Using methods:

❖ "Personalize" parameters to what we want
❖ Call method for object
❖ public methods can be called outside class;

private methods cannot

Call constructor to

instantiate piplup

(personalize

parameters)

Attributes, methods, and parameters

 Methods in Java appear in two places:

❖ When they are defined (inside their class)
❖ When they are used (inside our outside class)

 Defining (describing) methods:

❖ Optionally use a number of parameters
❖ Tell us output type
❖ For concrete methods: write out the code

 Using methods:

❖ "Personalize" parameters to what we want
❖ Call method for object
❖ public methods can be called outside class;

private methods cannot
Call method levelUp

for object piplup

Attributes and methods

 Here's a Pokemon class:

❖ Attributes go at the top

❖ Method 1: Pokemon (constructor)

Allows to instantiate pokemons

❖ Method 2: levelUp

Modifies an attribute

❖ Method 3: getName (a getter)

Retrieves attribute (level)

❖ Method 4: toString

Special role we will see later

Why same

name?

What does this do?

Variable references in Java

 Case 1: attribute (ex. class Pokemon)

❖ Reference within class Pokemon: this.<attributName>

Examples : this.name, this.type

❖ Reference outside class: depends on visibility

• Public: object piplup: piplup.<attributName>

• Private: need to use special methods, like getters or setters

 Special case: static attributes → Later!

 Case 2: not an attribute

❖ Cannot be referenced outside of that method

❖ Reference by name only

Examples

 Here's a Pokemon class:

❖ Attributes go at the top

❖ Method 1: Pokemon (constructor)

Allows to instantiate pokemons

❖ Method 2: levelUp

Modifies an attribute

❖ Method 3: getName (a getter)

Retrieves attribute (level)

❖ Method 4: toString

Special role we will see later

reference to attribute

Instruction assigns to the

attribute this.name the value

name

Procedures and functions

 Procedure (output type void):

❖ Modify an attribute

❖ Assign an attribute for the first

time

 Function (non-void output):

❖ Requires a return of the declared

type

❖ The current branch of code will

disregard instructions after return

Methods and signatures

 Java methods are characterized by signatures, containing class and :

 a return type (type of the variable to return) or void (no return)

 the method's name

 the types of the input variables (called the parameters)

 Syntax:

<visibility> <returnType> <name>(<typeP1> <nameP1>, <typeP2> <nameP2>,...) {

// method contents

// if method has non-void output type, it ends with a return statement

}

// compute 1+2+...+100

public int sum1to100(){
int result = 0;
for (int i=1; i<=100; i++){

result +=i;
}
return result;

}

Example: compute 1+2+...+100

visibility: public method

(can be called from outside the class

where it is written)

The method returns an

integer value
Method name

Special methods in Java

Special methods: Constructors

 Method names can be chosen at will

 Exception #1: constructors!

❖ A special method that is used to instantiate

objects

 We usually initialize the class attributes

within the constructor

 Thus, objects personalize the class

❖ Constructors are usually public

❖ Constructors must be named after the class

GP5 : Keep them intuitive though!

Constructors: howto

 It is not compulsory to write

constructors for each class

❖ Java has a constructor by default

❖ Signature <className>()

❖ Constructors by default can be used

to create objects but not to initialize

their attributes

 Multiple constructors

❖ All named after the class

❖ But must have different signatures!

❖ Typically, write the constructor with

the most parameters, then call it in

the other constructor(s)

this : replaces Pokemon = constructor

uses the name/type from parameters

but sets level to 1

Default constructors

 Java.lang.Object is a basic class in Java

❖ Which comes with a constructor

 All other classes in Java behave like Object's

❖ We say they "inherit" from Java.lang.Object

 If a class does not have a constructor, it can fall back on Object's

❖ Unfortunately this will not customize the objects

 However, as soon as the class gets its first constructor, it can no

longer use the constructor by default

The String toString() method

 Printing a primitive or String variable: use System.out.println!

❖ However, using System.out.println(piplup) will print a memory address

 To tell Java what you want to print for new class: use String toString()

 Writing String toString(): requires us to return a String

❖ Typically, a concatenation of the attributes

❖ Essentially "maps" each object to what we would like it to print as

 Calling a concrete String toString() method -- ex.: piplup.toString()

 Using a concrete String toString() method: System.out.println(piplup)

Why?

String toString() for Pokemon

Writing the toString method

Using the toString method

Getters and setters

 Special methods that enable us to work with private attributes

❖ Usually public visibility

 Getter:

❖ retrives the attribute's current value

<attributeType> get<attributeName>()

 Setter:

 modifies the attribute's current value

void set<attributeName>(<attributeType> value)

The main method

 The user's entry point into the program

 Included within a class (like all other methods in Java)

 Returns no output (void), takes in input a String[] array args

 args can be used to parametrize the execution of the program

 This method is static (universal to all objects of this type)

Static attributes and methods

 Attributes characterize a class

❖ But each instance of that class has customized attributes

❖ Changing the level of one pokemon does not typically affect another

 Static attributes are universal

❖ Not custom to any instance of the class

❖ ... but they apply to all instances

❖ For instance, I could have a static counter of

all pokemons ever created

Static attributes and methods

 Attributes characterize a class

 But each instance of that class has customized attributes

 Changing the level of one pokemon does not typically affect another

 Static attributes are universal

 Not custom to any instance of the class

 ... but they apply to all instances

 For instance, I could have a static counter of

all pokemons ever created

Accessing static attributes

 Usual attributes :

 accessed for an instance of that class :

 Directly (public attributes): piplup.name if name is public

 Indirectly (non-public attributes), using getters/setters: piplup.getName()

 Static attributes

 can be accessed for an instance of that class: piplup.totalNumberOfPokemons

 ... but also for the entire class: Pokemon.totalNumberOfPokemons

	Slide 1: R2.01 : Object-oriented development (OOD)
	Slide 2: Today's main goal
	Slide 3: Java: short history
	Slide 4: Java's main design goals
	Slide 5: Java vs. C and C++
	Slide 6: Basic Java syntax
	Slide 7: Classes and objects (reminder)
	Slide 8: Classes and objects (reminder)
	Slide 9: Classes and objects (reminder)
	Slide 10: Classes and objects (reminder)
	Slide 11: Java variables: a howto
	Slide 12: Variable types in Java
	Slide 13: Three types of variables
	Slide 14: Three types of variables
	Slide 15: Intermezzo : compilation error
	Slide 16: What is a compilation error ?
	Slide 17: Errors: examples
	Slide 18: End of intermezzo
	Slide 19: Basic Java instructions for variables
	Slide 20: Operations using variables
	Slide 21: Variables and logic
	Slide 22: More advanced Java syntax
	Slide 23: Strings
	Slide 24: Arrays
	Slide 25: Arrays
	Slide 26: Operations with arrays
	Slide 27: Variables stored in memory
	Slide 28: Variables stored in memory
	Slide 29: Conditional execution (if-then-else)
	Slide 30: While loops
	Slide 31: For loop
	Slide 32: Methods in Java
	Slide 33: Why methods?
	Slide 34: Attributes and methods
	Slide 35: Variables, attributes, parameters
	Slide 36: Attributes, methods, and parameters
	Slide 37: Attributes, methods, and parameters
	Slide 38: Attributes and methods
	Slide 39: Variable references in Java
	Slide 40: Examples
	Slide 41: Procedures and functions
	Slide 42: Methods and signatures
	Slide 43: Example: compute 1+2+...+100
	Slide 44: Special methods in Java
	Slide 45: Special methods: Constructors
	Slide 46: Constructors: howto
	Slide 47: Default constructors
	Slide 48: The String toString() method
	Slide 49: String toString() for Pokemon
	Slide 50: Getters and setters
	Slide 51: The main method
	Slide 52: Static attributes and methods
	Slide 53: Static attributes and methods
	Slide 54: Accessing static attributes

