R2.01 : Object-oriented
development (OOD)

Coordinator : Isabelle Blasquez
My name: Cristina Onete
cristina.onete@gmail.com

Today's main goal

Learn to write basic Java code for a basic application

*» Variable types, primitive/non-primitive
s Classes, attributes types, public vs. private
s Syntax: classes and attributes

* Instantiation, objects, % Basic variable manipulation
constructors % Constructor syntax and class instantiation

¢ Main method syntax

* Re : public vs. private variables
s Multiple classes, main method <« Using methods & attributes outside class

s The String toString() method

Java: short history

» 1991 :

» 1995 :

» 1998-1999 :

» 2007 :
» 2010 :

James Gosling, Mike Sheridan, Patrick Naughton embark on
the quest of developing Java

Sun Microsystems adheres to the "Write Once Run Anywhere”
paradigm : a reference implementation of Java by Sun

Java 2 released, including J2EE (today Jakarta EE) for distri
buted computing/web services; J2ZME for mobile application

Java makes its code open-source (GNU GPL license)
Oracle buys Java. Today, Java is all around us.

Java's main design goals

source: Design Goals of the Java programming language, Oracle 1999

Simple, object-oriented, and familiar

Architecture-neutral and portable

Interpreted, threaded, and dynamic

Is Java different from other programming languages ?

Java vs. C and C++

» Imperative language (C, C++) » Object-oriented language (Java)

Relies on functions and - Object oriented, using classes
procedures Objects instantiate classes; they
Programs consisting of function have their own attributes and
definitions and function calls methods

Each function caracterised by - Methods caracterised by
“signature”: I/0 types, name signatures, associated to classes

Local and global variables - All variables local (to methods,
classes, etc.)

Java is also verbose !

Basic Java syntax

Classes and objects (reminder)

» Class: an abstract representation (or model) of a concept
< Examples: "Student”, "Animal”, "Computer”, "Pokemon"...

< Contains attributes and methods

Pokemon
7 e
8 b
9 * @author crist
10 */
11 public class Pokemon {
12 // Ses attributs
13 private String name;
14 private String type;
15 private int level;
16
17 // Puis les méthodes

Variables that characterize the class 18 }

19

Classes and objects (reminder)

» Class: an abstract representation (or model) of a concept

» In Java, each object instantiates the class that defines it

» Each object is unique and must be customized

10
11
12
12
14
15
16
17

18
19

T

ll,-"w'-r

-

* @author crist
*/
public class Pokemon |
// Bes attributs
private String name;
private String type;

private int level;

// Pulis les méthodes

}

"””””f””””/””’) ®
Attributes

name

=

Piplup

type

water

Classes and objects (reminder)

» Class: an abstract representation (or model) of a concept

» In Java, each object instantiates the class that defines it

» Each object is unique and must be customized

T b

8 * /L'Jj\

g * @author crist .

s "y __— Attributes

11 public class Pokemon { =

12 // Ses attributs

13 private String name; hame leVEI

14 ivate Stri type; i

i private String type Piplup type 5
private int level;

16 water

17 // Puis les méthodes

18 |

19

C@ GP1 (Convention): class starts with capital letter, object starts with lowercase
ex: Pokemon vs. a pokemon

Classes and objects (reminder)

» Class: an abstract representation (or model) of a concept
» In Java, each object instantiates the class that defines it

» Each object is unique and must be customized

Ta - Qs

8 T * (/O3

g * @author crist ..
Attributes

10 * / _——]

11 public class Pokemon { =

12 // Ses 3 il name

13 Sfrivate String name?

14 private String type; P]plup type
15 private int level;

16 water
17 // Pulis les méthodes

18 }

19

N\

Let's have a look at variables in Java!

Java variables: a howto

» Four steps in handling variables in Java:

1. Declaring variables: visibility, type, hame are stated

[]private String name; private Pokemon piplup; T

2. Instantiation: create an object (special method: constructor)

Pokemon piplup; piplup = new Pokemon("Piplup", "Eau", 5); T

3. Assignment (initialisation): a first value is assignecd to a variable

name = "Piplup"; age = 7;

4. Modification/re-assignement : cette valeur peut ensuite étre modifiée

ﬂname = "Rowlet"; piplup = new Pokemon("Rowlet", "Herbe", 10);

Simultaneous declaration + instantiation:
Pokemon piplup = new Pokemon("Piplup", "eau", 5)

Variable types in Java

» Primitive types (8 in total!) :
< start with lowercase letters
byte, short, int, long - 8-, 16-, 32-, 64-bit long integers

float, double - decimal numbers, written with a dot: 3.4, 1.7, ...
char - 1 character, written between apostrophes: ‘'c, 'd, ...
boolean - true/false

» Non-primitive types (Java classes):
<« String - character strings, written between inverted commas: "Piplup”
<« Arrays: a data structure
< All other objects

Three types of variables

» Case 1: class attributes (ex: name is an attribute of Pokemon)

< Declared at beginning of the class description (usually not instantiated)
< Each attribute has a visibility: public, private, protected, ...
private String name; private int level;
< Personalisable by each instance (each object)
ex : each pokemon has a name, each has a level

» Case 2: special static attributes

Three types of variables

» Case 1: class attributes (ex: name is an attribute of Pokemon)

< Declared at beginning of the class description (usually not instantiated)
< Each attribute has a visibility: public, private, protected, ...
< Personalisable by each instance (each object)

» Case 2: special static attributes

» Case 3: other variables (appearing in and local to methods)

< Do not exist outside the environment for which they are defined
< Declared before/upon first use

< Using undeclared variables triggers an error of compilation

Intermezzo : compilation error

What is a compilation error ?

» Two types of errors in Java code : compilation and execution errors

» Compilation errors: code that is syntactically wrong
< Like spelling or grammatical errors in French/English languages

< The IDE detects those errors and signals it to the user

» Execution errors: code that is wrong for some particular exécution

< Sentences that do not make sense in a text
< The IDE cannot detect them, and they can crash the code

< Can be treated by using exceptions

Errors: examples

» Compilation errors:
< Using variables without declaring them
< Bad use of code syntax, semicolons, etc.

< Incorrect references to variables, etc.

J
’0’ eeo e

» Execution errors:
» Reading from or writing to a non-existent file
» Referencing beyond the size of a data structure (like an array)
> ...

End of intermezzo

Basic Java instructions for variables

» Assighment: ; at end of line

ﬂString pokemonName = "Piplup"; int level = 5;/1/

» Printing a primitive variable:

Exceptionally usable for String variables
Later: how to use this for other objects

ﬂ System.out.println(<variableName>); T

» Testing equality (primitive types): returns a boolean

[]int a=2; int b=3; boolean equality = (a == b);:]/ =

\
: Equality test
: assignment

\

Caution : non-primitive types do not work like primitive types !

For Strings: String a = "un string";
String b = "un string";
(==Db);

Comparing objects: use a.equals(b) !

Operations using variables

» Addition and subtraction :

< numeric types: + is addition, - is subtraction,

< boolean type: + and - do not apply

< String : + indicates the concatenation of strings

ﬂ System.out.println("Pip" + "lup"); >> Piplup 1 Caution : we do not use + on chars !

» Multiplication and division (* and /) : only numeric types

< The result of dividing two integers is an integer by default. Java rounds
the result automatically: 7/2 = 3

< Obtain a correct result cast the type to a more suitable one

Udouble result = (double) 7/2;}

Variables and logic

» Boolean variables can be used with logical operators:

+ Negation: true - false and false = true; (D boolean isEqual;
isEqual = !(2==3);
System.out.println(isEqual); >> true
» I(a == b)isthesameas (a != b) System.out.println(5 == 6);

» Syntax : !<variable>or ! (<value>) or !=

>> false

_/
< Logical OR: true/false OR true - true; false OR false - false
» Syntax : <booleanl> || <boolean2> U boolean isEqual = (2!=3) || (5

System.out.println(isEqual);

» Can apply to variables or expressions >> true

< Logical AND: true/false AND false - false; true AND true - true \
» Syntaxe : <booleanl> && <boolean2> [boolean isEqual = (2!=3) && (5 == 6);

System.out.println(isEqual); >> false

More advanced Java syntax

Strings

» String is a Java class, defining a type - hence the capital letter
» Strings are a special type, as they can be handled:

< Similarly to primitive variables: S pokemonNarfle; W
pokemonName = "Piplup";
+ As complex objects : String pokemonName;

pokemonName = new String("Piplup");

Cié GP2 : We will typically use the first of these methods...
... but we will remember that String is not a primitive type!

Arrays

» An array is an object which represents a collection of other objects

< One main attribut: its length (# of objects contained)
» Use:

1. Declaring an array : <type>[] <name> [double[] grades; Pokemon[] myPokemons;

2. Instatiation: compulsory (exception on next page) \

« Defines length: <name>=new <type>[<length>] myPokemons = new Pokemon[6]
< Arrays are indexed, from 0 to (length - 1) :

myPokemons([0] myPokemans[1] .o

Arrays

» An array is an object which represents a collection of other objects

» One main attribut: its length (# of objects contained)

» Use :

1. Declaring an array : <type>[] <name>

2. Instatiation: compulsory (exception on next page)
< Defines length: <name>=new <type>[<length>]

< Arrays are indexed, from 0 to (length - 1) :

3. Assignment: three ways: double[] grades=new double[3];
< Instantiation + assignment: grades={12.0, 16.5, 13.0};

« Implicit length by assigr" double[] grades = new double[3];
grades[0]=12.0;
< Element by element: grades[1]=16.5;

grades[2]=13.0;

Operations with arrays

» Array elements "borrow" all operations belonging to their types:
» EX.: the elements of a String[] can use any operation native to Strings
< comparison: <stringl>.equals(<string2>)
< + allows the concatenation of Strings

< =1is used for assignment -- remember also to use the inverted commas " “

» Arrays can also be manipulated on their own:

» However, such operations should be handled with care!

Initialise myGrades
set yourGrades = myGrades

(0 double[] myGrades = {12, 10, 15.6}; <
double[] yourGrades = myGrades;

myGrades[2] = 13; < Modify myGrades[2]
System.out.println(yourGrades[2]); > 3

Why ??

Variables stored in memory

» Every variable and every object is stored in memory:

“ int a; a-:
“ a=ua; aﬂ

» This also holds for objects:

ﬂ Pokemon piplup; 1 Piplup

» Assignment:

> address in memory, ex. 15db9742

attributes of

/ variable piplup

address in memo

<
«

(9

wa) piplup
Pokemon piplup = new Pokemon(“Piplup",// m o]

"WATER", 5);
Pokemon rowlet = new Pokemon("Rowlet",

rowlet
n n . \
AIR > 7) 3 \ /

System.out.println(rowlet.getlLevel());

row
>> i

Variables stored in memory

» Every variable and every object is stored in memory:
“ int a; | -
“ a=ua; | H

» This also holds for objects:

piplup

» Assignment: o)

piplup
ey e - [EIELY
Pokemon piplup = new Pokemon("Piplup", D ter
"WATER", 5);
Pokemon rowlet = piplup; ‘\\\\\\\‘
rowlet

piplup.setLevel(7);
System.out.println(rowlet.getlLevel());

5> These variables share an addresss
Modifying one changes the othe

Conditional execution (if-then-else)

» Syntax: in-code comment

if (<tW (compiler disregards text on same line afte\r /1)

instructions separated by ";

D), G
) if (2==3){

else { . " . ny .
// instructions separated by ;" System.out.println("Blue pill.");

}
} else {
System.out.println("Red pill.");
}

\—/
» One instruction => curly brackets {} are not compulsory

Céé GP3 : properly indent your code (indentation is 2 to 4 characters)
GP4 : use the curly brackets! (we always will)

While loops

» Syntax (’ // compute 1+2+...+100

while (condition) {

public int sumltolee(){
// instructions separated by ";" 7 int result = 0;

} 1; //iterator

while\(i <= 100){
stand-alone method rejult +=i;
(in a class) i++

}
return type : int > return rgsult;
visibility : public }

N

» Remember to increment the iterator iterator local to method

For loop

» Syntax:

for (<start condition>; <stop condition>; <incrementation>) {

// instructions separated by ";
} C. // compute 1+2+...+100

public int sumltol100(){
int result = 0;
for (int i=1; i<=100; i++){
result +=i;

}

return result;

» Remember to declare the iterator ! }

Methods in Java

Why methods?

» Java methods allow us to:
< instantiate classes (special method called a constructor)
< initialize or modify the values of an attribute
< do a computation on the attributes in a class
< obtain a result, such as printing on the screen

» All methods in Java are included in classes
< Most methods in a class are run "by" (or for) given instances of that class
< An exception is using a static method

Attributes and methods

» Here's a Pokemon class: / !Vi?ffr':,f:: ?
< Attributes go at the top i ot
private String type;
< Method 1: Pokemon (constructor) private dnt level;

Allows to instantiate pokemons
this.type = type;

< Method 2: levelUp y | TENEREAE

Modifies an attribute public void levelUp() {
this.level += 1;
}

public String getName() {
Retrieves attribute (level) g RS AT

o . i public String toString() {
* Method 4: tOStr]ng return("Pokemon[" + t!:l‘s.n’ane + ", " +this.type + ", " + this.level+"]");

< Method 3: getName (a getter)

Special role we will see later
9 O

Variables, attributes, parameters

» Attributes:

< Variables that characterize a class private Str'i(:g ﬁafm;
R private String type;
» Declared at the top of the class o e ol

“ InStant]ated in constructor public Pokemon(String name, String type, int level) {

» Parameters: $his fYok = UEE
this.level = level;

< Variables input to methods :
<« Symbolic at method declaration PIRLIS. oI 1evalpe) £

. this.level += 1;
< Each call to method personalises them ?
public String getName() {

» Other variables: | return this.nane;
* Local to methOdS public String toString()
RN Used for Storage iteration }| l'etul‘ﬂ('PO‘(mﬂ[' + thisonm i ‘,] "this-type + ., M tbiS.‘leve1+']');
¢ ’

9 O

Attributes, methods, and parameters

public class Pokemon {
private String name;

» Methods in Java appear in two places: Erfoete Int Lol
= When they are defined (inside their class) @;‘; it TR
3 i i i : zs: -= eve |
< When they are used (inside our outside class) ,thls.level - evel; Call constructor to
» Defining (describing) methods: pablic votd Levelup() instantiate piplup
} (personalize

» Optionally use a number of parameters e S e parameters)
+ Tell us output type g e M *
» For concrete methods: write out the code

public String tostring() {
» Using methods:

return("Pokemon[" + this.name + ", [' +this.type + ",
< "Personalize"” parameters to what we want public class PokemonHunt {
: Call method for Ob_]eCt - public static void main(String[] args) E]

" + this.level+"]");

< public methods can be called outside class; %nw Pokemon("Piplup", "WATER",
pl’ivate methOdS CannOt gyztem out.println(piplup.getName());

X

Attributes, methods, and parameters

public class Pokemon {
private String name;

» Methods in Java appear in two places: ok ol
<« When they are defined (inside their class) "“"IE&Z‘.’EE';Z“;SE:.?.:? N R SN
< When they are used (inside our outside class) } this.level = level;
» Defining (describing) methods: GBI void Levelvp (T
. }
< Optionally use a number of parameters i Sirie ccbibins 1
oo Teu us Output type : return [this.name;
< For concrete methods: write out the code ublic R tostring() [

return{"Pokemon[" + this.name + ", " +this.type + ", " + this.level+"]");

» Using methods:

< "Personalize” parameters to what we want public class Pokemontunt {

< Call method for object © public static vdid main(String[] args) [

< public methods can be called outside class; meu Pokemon(“Piplup”, "WATER", 5);
private methods cannot Bp R 0);

Call method levelUpm
for object piplup

Attributes and methods

Why same
name?
public class Pokemo

» Here's a Pokemon class:

< Attributes go at the top

< Method 1: Pokemon (constructor)
Allows to instantiate pokemons

< Method 2: levelUp
Modifies an attribute

< Method 3: getName (a getter)
Retrieves attribute (level)

< Method 4: toString

Special role we will see later

private String

private String type;
private int level;

public PokemoﬂStrinString type, int level) {

QE;s.name = name; —>
thiss =

this.level = level;
}

public void levelUp() {
this.level += 1;
}

public String getName() {
return this.name;
}

public String toString() | |
return("Pokemon[" + this.name + ", " +this.type + ", " + this.level+"]");

What does this do?

A ANy

Variable references in Java

» Case 1: attribute (ex. class Pokemon)

< Reference within class Pokemon: this.<attributName>
Examples : this.name, this.type

< Reference outside class: depends on visibility
- Public: object piplup: piplup.<attributName>
- Private: need to use special methods, like getters or setters

» Special case: static attributes - Later!

» Case 2: not an attribute

< Cannot be referenced outside of that method

< Reference by name only

Examples

» Here's a Pokemon class:

< Attributes go at the top

< Method 1: Pokemon (constructor)
Allows to instantiate pokemons

< Method 2: levelUp
Modifies an attribute

< Method 3: getName (a getter)
Retrieves attribute (level)

< Method 4: toString

Special role we will see later

public class Pokemo

private String
private String type;
private int level;

public Pokemon(String name
name;
this.type pe;
this.level = levw];

String type, int level) {

}

public void levelUp() {
this.level += 1;

} Instruction assigns to the
public String getName() { attribute this.name the value

return this.name;

} name

reference to attribute

public String toString() ff
return("Pokemon[" + this.name + ", " +this.type + ", " + this.level+"]");

A ANy

Procedures and functions

» Procedure (output type void):

public class Pokemon {
private String name;
private String type;
private int level;

< Modify an attribute

< Assign an attribute for the first
time ublic Pokemon(String name, String type, int level) {

this.name = name;

this.type = type;

tRis.level = level;

» Function (non-void output): }

< Requires a return of the declare <Gublic void lev
type S

< The current branch of code will String getN
. . . eturn this.name;
disregard instructions after return }
<public String toStringS!jﬂ> : :
Tem + this.name + ", " +this.type + ", " + this.level+"]");

|

elUp()
+=1;

A ANy

Methods and signatures

» Java methods are characterized by signatures, containing class and
» a return type (type of the variable to return) or void (no return)
» the method's name

» the types of the input variables (called the parameters)

» Syntax:

<visibility> <returnType> <name>(<typePl> <namePl>, <typeP2> <nameP2>,..
// method contents

// 1if method has non-void output type, it ends with a return

Example: compute 1+2+...+100

// compute 1+2+...+100

publiOnE sumito1080){
/ in =S t = @;
visibility: public method r (inf i=1; i<=100; i++){

\ . ©

The method returns an
integer value

(can be called from outside the class resplt +=1i;
where it is written) }
/| _~Tetur] result>
L]
_/

/

Method name

Special methods in Java

Special methods: Constructors

» Method names can be chosen at will

GP5 : Keep them intuitive though! public class Pokemon {
private String name;

private String type;
private int level;

» Exception #1: constructors! public Pokemon(String name, String type, int level) {

this.name = name;

. : : : : this.type = type;
“ A spec1al method that is used to instantiate this. level = levels
objects }
» We usually initialize the class attributes P et e i

within the constructor }

» Thus, objects personalize the class
< Constructors are usually public

< Constructors must be named after the class

Constructors: howto

» It is not compulsory to write
constructors for each class

< Java has a constructor by default

< Signature <className>()

< Constructors by default can be used
to create objects but not to initialize’
their attributes

» Multiple constructors

< All named after the class

W N P L R D W00~ W bW
1 1

public class Pokemon {
private String name;
private String type;
private int level;

public Pokemon(String name, String type, int level) {
this.name = name;
this.type = type;
this.level = level;

}

public Pokemon(String name, String type) {
this{name, type, 1);

9/

\ 4

< But must have different signatures!

< Typically, write the constructor with
the most parameters, then call it in
the other constructor(s)

this : rep[aces Pokemon = constructor

uses the name/type from parameters
but sets level to 1

Default constructors

» Java.lang.Object is a basic class in Java
< Which comes with a constructor
» All other classes in Java behave like Object's

< We say they "inherit" from Java.lang.Object

» If a class does not have a constructor, it can fall back on Object’s

< Unfortunately this will not customize the objects

» However, as soon as the class gets its first constructor, it can no
longer use the constructor by default

The String toString() method

» Printing a primitive or ¢ W " Hle: use System.out.println!

hy?
< However, using Systeni.out.pruui(piplup) will print a memory address

» To tell Java what you want to print for new class: use string toString()

» Writing String toString(): requires us to return a String
< Typically, a concatenation of the attributes
< Essentially "maps” each object to what we would like it to print as

» Calling a concrete String toString() method -- ex.: piplup.toString()
» Using a concrete String toString() method: System.out.println(piplup)

String toString() for Pokemon

public class Pokemon {

rivate String name; .y .
:rmte St,.,;,,g type; Writing the toString method

private int level;

blic Pokemon(Strin , String type, ifit level . .
o g e il g evel)-t Using the toString method

this.type = type; \
this.level = level;

} sublic class PokempnHunt {

public void levelUp() { public static

this.level +=1; Pokemon piplup = new Pokemon("Piplup", "WATER", 5);

} System.out.println(piplup);
public String getName() { }

return this.name; y
}

c String toString() | | o | ‘
mum(.POkm[. + this.name + ", " Q-this.type +"," 4+ this.le@

Getters and setters

» Special methods that enable us to work with private attributes

< Usually public visibility

3 publ

E as® Pokemon {
} Str-ing name;
5 private |5tring type;
5 private/int level;
7
> Getter: : puhli;i:?::EnESx:‘:f name, String type, int level) {
. . 3 this.type = type;
< retrives the attr s current value |, Tedevelnieel
3
<attributeType> get<attii L+(fﬁffjﬁ%smﬂm&ﬁﬂhﬁjﬁﬁii:>
5 this.name = name;
» Setter: !
: @tring getName
» modifies the attribute's current value) y—ieturn this:name;

void set<attributeName>(<attributeType> value)

The main method

» The user's entry point into the program

» Included within a class (like all other methods in Java)

» Returns no output (void), takes in input a String[] array args
» args can be used to parametrize the execution of the program

» This method is static (universal to all objects of this type)

oublic class PokemonHunt {
public static void main(String[] args) {

Pokemon piplup = new Pokemon("Piplup"”, "WATER", 5);
System.out.println(piplup);

Static attributes and methods

» Attributes characterize a class

< But each instance of that class has customized attributes

< Changing the level of one pokemon does not typically affect another

» Static attributes are universal
< Not custom to any instance of the class
< ... but they apply to all instances
< For instance, | could have a static counter of

all pokemons ever created

Static attributes and methods

» Attributes characterize a class

» But each instance of that class has customized attributes

3 public class Pokemon {

» Changing the level of one pokemon does Not typi =" private string nane;

5 private String type;

<
private static int totalNumberOfFPokemons =:§I::::>

public Pokemon(String name, String type, int level) {
this.name = name;
this.type = type;

This.level = level;
<::::;::_EataLﬂumbtrqubkemans++;

» Static attributes are universal

» Not custom to any instance of the class

> ... but they apply to all]nStanceS 16¢ public Pokemon(String name, String type) {
17 this{name, type, 1);
18 }

» For instance, | could have a static céunter of 19
20= public void levelUp() {
21 this.level += 1;

all pokemons ever created 2)

24+ public String getName() {
25 return this.name;
26 }

Accessing static attributes

» Usual attributes :

» accessed for an instance of that class :

» Directly (public attributes): piplup.name if name is public

» Indirectly (non-public attributes), using getters/setters: piplup.getName()

» Static attributes
» can be accessed for an instance of that class: piplup.totalNumberOfPokemon

» ... but also for the entire class: Pokemon.totalNumberOfPokemons

	Slide 1: R2.01 : Object-oriented development (OOD)
	Slide 2: Today's main goal
	Slide 3: Java: short history
	Slide 4: Java's main design goals
	Slide 5: Java vs. C and C++
	Slide 6: Basic Java syntax
	Slide 7: Classes and objects (reminder)
	Slide 8: Classes and objects (reminder)
	Slide 9: Classes and objects (reminder)
	Slide 10: Classes and objects (reminder)
	Slide 11: Java variables: a howto
	Slide 12: Variable types in Java
	Slide 13: Three types of variables
	Slide 14: Three types of variables
	Slide 15: Intermezzo : compilation error
	Slide 16: What is a compilation error ?
	Slide 17: Errors: examples
	Slide 18: End of intermezzo
	Slide 19: Basic Java instructions for variables
	Slide 20: Operations using variables
	Slide 21: Variables and logic
	Slide 22: More advanced Java syntax
	Slide 23: Strings
	Slide 24: Arrays
	Slide 25: Arrays
	Slide 26: Operations with arrays
	Slide 27: Variables stored in memory
	Slide 28: Variables stored in memory
	Slide 29: Conditional execution (if-then-else)
	Slide 30: While loops
	Slide 31: For loop
	Slide 32: Methods in Java
	Slide 33: Why methods?
	Slide 34: Attributes and methods
	Slide 35: Variables, attributes, parameters
	Slide 36: Attributes, methods, and parameters
	Slide 37: Attributes, methods, and parameters
	Slide 38: Attributes and methods
	Slide 39: Variable references in Java
	Slide 40: Examples
	Slide 41: Procedures and functions
	Slide 42: Methods and signatures
	Slide 43: Example: compute 1+2+...+100
	Slide 44: Special methods in Java
	Slide 45: Special methods: Constructors
	Slide 46: Constructors: howto
	Slide 47: Default constructors
	Slide 48: The String toString() method
	Slide 49: String toString() for Pokemon
	Slide 50: Getters and setters
	Slide 51: The main method
	Slide 52: Static attributes and methods
	Slide 53: Static attributes and methods
	Slide 54: Accessing static attributes

