
R2.01 : Object-oriented

development (OOD)

Coordinator : Isabelle Blasquez

My name: Cristina Onete

cristina.onete@gmail.com

Today's main goal

Concepts Java

❖ Classes, attributes

❖ Variable types, primitive/non-primitive

types, public vs. private

❖ Syntax: classes and attributes

❖ Instantiation, objects,

constructors

❖ Basic variable manipulation

❖ Constructor syntax and class instantiation

❖ Multiple classes, main method

❖ Main method syntax

❖ Re : public vs. private variables

❖ Using methods & attributes outside class

❖ The String toString() method

Learn to write basic Java code for a basic application

Java: short history

James Gosling, Mike Sheridan, Patrick Naughton embark on

the quest of developing Java

Sun Microsystems adheres to the "Write Once Run Anywhere"

paradigm : a reference implementation of Java by Sun

Java 2 released, including J2EE (today Jakarta EE) for distri-

buted computing/web services; J2ME for mobile applications

 1991 :

 1995 :

 1998-1999 :

J2 SE

(standard)

J2 EE

(entreprise)

J2 ME

(micro)

 2007 :

 2010 :

Java makes its code open-source (GNU GPL license)

Oracle buys Java. Today, Java is all around us.

Java's main design goals

Simple, object-oriented, and familiar

Robust and secure

Architecture-neutral and portable

It must execute with high performance

Interpreted, threaded, and dynamic

source: Design Goals of the Java programming language, Oracle 1999

Is Java different from other programming languages ?

Java vs. C and C++

 Imperative language (C, C++)

• Relies on functions and

procedures

• Programs consisting of function

definitions and function calls

• Each function caracterised by

"signature": I/O types, name

• Local and global variables

 Object-oriented language (Java)

• Object oriented, using classes

• Objects instantiate classes; they

have their own attributes and

methods

• Methods caracterised by

signatures, associated to classes

• All variables local (to methods,

classes, etc.)

Java is also verbose !

Basic Java syntax

Classes and objects (reminder)

 Class: an abstract representation (or model) of a concept

❖ Examples: "Student", "Animal", "Computer", "Pokemon"…

❖ Contains attributes and methods

Pokemon

Attributes

Variables that characterize the class

Classes and objects (reminder)

 Class: an abstract representation (or model) of a concept

 In Java, each object instantiates the class that defines it

 Each object is unique and must be customized

Attributes

name

Piplup type

water

level

5

Classes and objects (reminder)

 Class: an abstract representation (or model) of a concept

 In Java, each object instantiates the class that defines it

 Each object is unique and must be customized

Attributes

name

Piplup type

water

level

5

GP1 (Convention): class starts with capital letter, object starts with lowercase

ex: Pokemon vs. a pokemon

Classes and objects (reminder)

 Class: an abstract representation (or model) of a concept

 In Java, each object instantiates the class that defines it

 Each object is unique and must be customized

Attributes

name

Piplup type

water

level

5

Let's have a look at variables in Java!

Java variables: a howto

 Four steps in handling variables in Java:

1. Declaring variables: visibility, type, name are stated

2. Instantiation: create an object (special method: constructor)

3. Assignment (initialisation): a first value is assigned to a variable

4. Modification/ré-assignement : cette valeur peut ensuite être modifiée

Simultaneous declaration + instantiation:
Pokemon piplup = new Pokemon("Piplup", "eau", 5)

private String name; private Pokemon piplup;

Pokemon piplup; piplup = new Pokemon("Piplup", "Eau", 5);

name = "Piplup"; age = 7;

name = "Rowlet"; piplup = new Pokemon("Rowlet", "Herbe", 10);

Variable types in Java

 Primitive types (8 in total!) :

❖ start with lowercase letters

byte, short, int, long – 8-, 16-, 32-, 64-bit long integers

float, double – decimal numbers, written with a dot: 3.4, 1.7, ...

char – 1 character, written between apostrophes: 'c', 'd', ...

boolean – true/false

 Non-primitive types (Java classes):

❖ String – character strings, written between inverted commas: "Piplup"

❖ Arrays: a data structure

❖ All other objects

Three types of variables

 Case 1: class attributes (ex: name is an attribute of Pokemon)

❖ Declared at beginning of the class description (usually not instantiated)

❖ Each attribute has a visibility: public, private, protected, ...

private String name; private int level;

❖ Personalisable by each instance (each object)

ex : each pokemon has a name, each has a level

 Case 2: special static attributes

Three types of variables

 Case 1: class attributes (ex: name is an attribute of Pokemon)

❖ Declared at beginning of the class description (usually not instantiated)

❖ Each attribute has a visibility: public, private, protected, ...

❖ Personalisable by each instance (each object)

 Case 2: special static attributes

 Case 3: other variables (appearing in and local to methods)

❖ Do not exist outside the environment for which they are defined

❖ Declared before/upon first use

❖ Using undeclared variables triggers an error of compilation

Intermezzo : compilation error

What is a compilation error ?

 Two types of errors in Java code : compilation and execution errors

 Compilation errors: code that is syntactically wrong

❖ Like spelling or grammatical errors in French/English languages

❖ The IDE detects those errors and signals it to the user

 Execution errors: code that is wrong for some particular exécution

❖ Sentences that do not make sense in a text

❖ The IDE cannot detect them, and they can crash the code

❖ Can be treated by using exceptions

Errors: examples

 Compilation errors:

❖ Using variables without declaring them

❖ Bad use of code syntax, semicolons, etc.

❖ Incorrect references to variables, etc.

❖ ...

 Execution errors:

 Reading from or writing to a non-existent file

 Referencing beyond the size of a data structure (like an array)

 ...

End of intermezzo

 Assignment:

 Printing a primitive variable:

 Testing equality (primitive types): returns a boolean

String pokemonName = "Piplup"; int level = 5;

Basic Java instructions for variables

; at end of line

== : Equality test

= : assignment

Caution : non-primitive types do not work like primitive types !

For Strings: String a = "un string";
String b = "un string";
(a == b);

Comparing objects: use a.equals(b) !

Exceptionally usable for String variables

Later: how to use this for other objects
System.out.println(<variableName>);

int a=2; int b=3; boolean equality = (a == b);

Operations using variables

 Addition and subtraction :

❖ numeric types: + is addition, - is subtraction,

❖ boolean type: + and - do not apply

❖ String : + indicates the concatenation of strings

 Multiplication and division (* and /) : only numeric types

❖ The result of dividing two integers is an integer by default. Java rounds

the result automatically: 7/2 = 3

❖ Obtain a correct result cast the type to a more suitable one

System.out.println("Pip" + "lup"); >> Piplup Caution : we do not use + on chars !

double result = (double) 7/2;

Variables and logic

 Boolean variables can be used with logical operators:

❖ Negation: true → false and false → true;

 Syntax : !<variable> or !(<value>) or !=

 !(a == b) is the same as (a != b)

❖ Logical OR: true/false OR true → true; false OR false → false

 Syntax : <boolean1> || <boolean2>

 Can apply to variables or expressions

❖ Logical AND: true/false AND false → false; true AND true → true

 Syntaxe : <boolean1> && <boolean2>

boolean isEqual;
isEqual = !(2==3);
System.out.println(isEqual);
System.out.println(5 == 6);

>> true

>> false

boolean isEqual = (2!=3) || (5 == 6);
System.out.println(isEqual); >> true

boolean isEqual = (2!=3) && (5 == 6);
System.out.println(isEqual); >> false

More advanced Java syntax

Strings

 String is a Java class, defining a type – hence the capital letter

 Strings are a special type, as they can be handled:

❖ Similarly to primitive variables:

❖ As complex objects :

String pokemonName;
pokemonName = "Piplup";

String pokemonName;
pokemonName = new String("Piplup");

GP2 : We will typically use the first of these methods...

... but we will remember that String is not a primitive type!

Arrays

 An array is an object which represents a collection of other objects

❖ One main attribut: its length (# of objects contained)

 Use :

1. Declaring an array : <type>[] <name>

2. Instatiation: compulsory (exception on next page)

❖ Defines length: <name>=new <type>[<length>]

❖ Arrays are indexed, from 0 to (length – 1) :

double[] grades; Pokemon[] myPokemons;

myPokemons = new Pokemon[6]

myPokemons[0] myPokemons[1] myPokemons[5]...

Arrays

 An array is an object which represents a collection of other objects

 One main attribut: its length (# of objects contained)

 Use :

1. Declaring an array : <type>[] <name>

2. Instatiation: compulsory (exception on next page)

❖ Defines length: <name>=new <type>[<length>]

❖ Arrays are indexed, from 0 to (length – 1) :

3. Assignment: three ways:

❖ Instantiation + assignment:

❖ Implicit length by assignement:

❖ Element by element:

double[] grades=new double[3];
grades={12.0, 16.5, 13.0};

double[] grades = {12.0, 16.5, 13.0};
int[] ages = new int[]{18,25}

double[] grades = new double[3];
grades[0]=12.0;
grades[1]=16.5;
grades[2]=13.0;

Operations with arrays

 Array elements "borrow" all operations belonging to their types:

 Ex.: the elements of a String[] can use any operation native to Strings

❖ comparison: <string1>.equals(<string2>)

❖ + allows the concatenation of Strings

❖ = is used for assignment -- remember also to use the inverted commas " "

 Arrays can also be manipulated on their own:

 However, such operations should be handled with care!

double[] myGrades = {12, 10, 15.6};
double[] yourGrades = myGrades;
myGrades[2] = 13;
System.out.println(yourGrades[2]);

Modify myGrades[2]

Initialise myGrades

set yourGrades = myGrades

>> 13

Why ??

Variables stored in memory

 Every variable and every object is stored in memory:

 This also holds for objects:

 Assignment:

int a;
a

address in memory, ex. 15db9742

a = 5; 5
a

Pokemon piplup;
piplup address in memory

attributes of

variable piplup

Les variables ont deux adresses différentes

Pokemon piplup = new Pokemon("Piplup",
"WATER", 5);
Pokemon rowlet = new Pokemon("Rowlet",
"AIR", 7);
System.out.println(rowlet.getLevel());

row

let
air 7

piplup

rowlet

pip

lup
wa

ter
5

>> 7

Variables stored in memory

 Every variable and every object is stored in memory:

 This also holds for objects:

 Assignment:

int a;
a

a = 5; 5
a

Pokemon piplup;
piplup

Les variables ont deux adresses différentes These variables share an addresss

Modifying one changes the other

Pokemon piplup = new Pokemon("Piplup",
"WATER", 5);
Pokemon rowlet = piplup;
piplup.setLevel(7);
System.out.println(rowlet.getLevel());

piplup

rowlet

pip

lup
wa

ter
5

>> 7

Conditional execution (if-then-else)

 Syntax:
if (<test>) {

// instructions separated by ";"
}
else {

// instructions separated by ";"
}

 One instruction => curly brackets {} are not compulsory

GP3 : properly indent your code (indentation is 2 to 4 characters)

GP4 : use the curly brackets! (we always will)

in-code comment

(compiler disregards text on same line after //)

if (2==3){
System.out.println("Blue pill.");

}
else {

System.out.println("Red pill.");
}

While loops

 Syntax

while (condition) {

// instructions separated by ";"

}

 Remember to increment the iterator

// compute 1+2+...+100

public int sum1to100(){
int result = 0;
int i = 1; //iterator
while (i <= 100){

result +=i;
i++;

}
return result;

}

stand-alone method

(in a class)

return type : int

visibility : public

iterator local to method

For loop

 Syntax:

for (<start condition>; <stop condition>; <incrementation>) {

// instructions separated by ";"

}

 Remember to declare the iterator !

// compute 1+2+...+100

public int sum1to100(){
int result = 0;
for (int i=1; i<=100; i++){

result +=i;
}
return result;

}

Methods in Java

Why methods?

 Java methods allow us to:

❖ instantiate classes (special method called a constructor)

❖ initialize or modify the values of an attribute

❖ do a computation on the attributes in a class

❖ obtain a result, such as printing on the screen

❖ ...

 All methods in Java are included in classes

❖ Most methods in a class are run "by" (or for) given instances of that class

❖ An exception is using a static method

Attributes and methods

 Here's a Pokemon class:

❖ Attributes go at the top

❖ Method 1: Pokemon (constructor)

Allows to instantiate pokemons

❖ Method 2: levelUp

Modifies an attribute

❖ Method 3: getName (a getter)

Retrieves attribute (level)

❖ Method 4: toString

Special role we will see later

What's the

difference ?

Variables, attributes, parameters

 Attributes:

❖ Variables that characterize a class

❖ Declared at the top of the class

❖ Instantiated in constructor

 Parameters:

❖ Variables input to methods

❖ Symbolic at method declaration

❖ Each call to method personalises them

 Other variables:

❖ Local to methods

❖ Used for storage, iteration

Attributes, methods, and parameters

 Methods in Java appear in two places:

❖ When they are defined (inside their class)
❖ When they are used (inside our outside class)

 Defining (describing) methods:

❖ Optionally use a number of parameters
❖ Tell us output type
❖ For concrete methods: write out the code

 Using methods:

❖ "Personalize" parameters to what we want
❖ Call method for object
❖ public methods can be called outside class;

private methods cannot

Call constructor to

instantiate piplup

(personalize

parameters)

Attributes, methods, and parameters

 Methods in Java appear in two places:

❖ When they are defined (inside their class)
❖ When they are used (inside our outside class)

 Defining (describing) methods:

❖ Optionally use a number of parameters
❖ Tell us output type
❖ For concrete methods: write out the code

 Using methods:

❖ "Personalize" parameters to what we want
❖ Call method for object
❖ public methods can be called outside class;

private methods cannot
Call method levelUp

for object piplup

Attributes and methods

 Here's a Pokemon class:

❖ Attributes go at the top

❖ Method 1: Pokemon (constructor)

Allows to instantiate pokemons

❖ Method 2: levelUp

Modifies an attribute

❖ Method 3: getName (a getter)

Retrieves attribute (level)

❖ Method 4: toString

Special role we will see later

Why same

name?

What does this do?

Variable references in Java

 Case 1: attribute (ex. class Pokemon)

❖ Reference within class Pokemon: this.<attributName>

Examples : this.name, this.type

❖ Reference outside class: depends on visibility

• Public: object piplup: piplup.<attributName>

• Private: need to use special methods, like getters or setters

 Special case: static attributes → Later!

 Case 2: not an attribute

❖ Cannot be referenced outside of that method

❖ Reference by name only

Examples

 Here's a Pokemon class:

❖ Attributes go at the top

❖ Method 1: Pokemon (constructor)

Allows to instantiate pokemons

❖ Method 2: levelUp

Modifies an attribute

❖ Method 3: getName (a getter)

Retrieves attribute (level)

❖ Method 4: toString

Special role we will see later

reference to attribute

Instruction assigns to the

attribute this.name the value

name

Procedures and functions

 Procedure (output type void):

❖ Modify an attribute

❖ Assign an attribute for the first

time

 Function (non-void output):

❖ Requires a return of the declared

type

❖ The current branch of code will

disregard instructions after return

Methods and signatures

 Java methods are characterized by signatures, containing class and :

 a return type (type of the variable to return) or void (no return)

 the method's name

 the types of the input variables (called the parameters)

 Syntax:

<visibility> <returnType> <name>(<typeP1> <nameP1>, <typeP2> <nameP2>,...) {

// method contents

// if method has non-void output type, it ends with a return statement

}

// compute 1+2+...+100

public int sum1to100(){
int result = 0;
for (int i=1; i<=100; i++){

result +=i;
}
return result;

}

Example: compute 1+2+...+100

visibility: public method

(can be called from outside the class

where it is written)

The method returns an

integer value
Method name

Special methods in Java

Special methods: Constructors

 Method names can be chosen at will

 Exception #1: constructors!

❖ A special method that is used to instantiate

objects

 We usually initialize the class attributes

within the constructor

 Thus, objects personalize the class

❖ Constructors are usually public

❖ Constructors must be named after the class

GP5 : Keep them intuitive though!

Constructors: howto

 It is not compulsory to write

constructors for each class

❖ Java has a constructor by default

❖ Signature <className>()

❖ Constructors by default can be used

to create objects but not to initialize

their attributes

 Multiple constructors

❖ All named after the class

❖ But must have different signatures!

❖ Typically, write the constructor with

the most parameters, then call it in

the other constructor(s)

this : replaces Pokemon = constructor

uses the name/type from parameters

but sets level to 1

Default constructors

 Java.lang.Object is a basic class in Java

❖ Which comes with a constructor

 All other classes in Java behave like Object's

❖ We say they "inherit" from Java.lang.Object

 If a class does not have a constructor, it can fall back on Object's

❖ Unfortunately this will not customize the objects

 However, as soon as the class gets its first constructor, it can no

longer use the constructor by default

The String toString() method

 Printing a primitive or String variable: use System.out.println!

❖ However, using System.out.println(piplup) will print a memory address

 To tell Java what you want to print for new class: use String toString()

 Writing String toString(): requires us to return a String

❖ Typically, a concatenation of the attributes

❖ Essentially "maps" each object to what we would like it to print as

 Calling a concrete String toString() method -- ex.: piplup.toString()

 Using a concrete String toString() method: System.out.println(piplup)

Why?

String toString() for Pokemon

Writing the toString method

Using the toString method

Getters and setters

 Special methods that enable us to work with private attributes

❖ Usually public visibility

 Getter:

❖ retrives the attribute's current value

<attributeType> get<attributeName>()

 Setter:

 modifies the attribute's current value

void set<attributeName>(<attributeType> value)

The main method

 The user's entry point into the program

 Included within a class (like all other methods in Java)

 Returns no output (void), takes in input a String[] array args

 args can be used to parametrize the execution of the program

 This method is static (universal to all objects of this type)

Static attributes and methods

 Attributes characterize a class

❖ But each instance of that class has customized attributes

❖ Changing the level of one pokemon does not typically affect another

 Static attributes are universal

❖ Not custom to any instance of the class

❖ ... but they apply to all instances

❖ For instance, I could have a static counter of

all pokemons ever created

Static attributes and methods

 Attributes characterize a class

 But each instance of that class has customized attributes

 Changing the level of one pokemon does not typically affect another

 Static attributes are universal

 Not custom to any instance of the class

 ... but they apply to all instances

 For instance, I could have a static counter of

all pokemons ever created

Accessing static attributes

 Usual attributes :

 accessed for an instance of that class :

 Directly (public attributes): piplup.name if name is public

 Indirectly (non-public attributes), using getters/setters: piplup.getName()

 Static attributes

 can be accessed for an instance of that class: piplup.totalNumberOfPokemons

 ... but also for the entire class: Pokemon.totalNumberOfPokemons

	Slide 1: R2.01 : Object-oriented development (OOD)
	Slide 2: Today's main goal
	Slide 3: Java: short history
	Slide 4: Java's main design goals
	Slide 5: Java vs. C and C++
	Slide 6: Basic Java syntax
	Slide 7: Classes and objects (reminder)
	Slide 8: Classes and objects (reminder)
	Slide 9: Classes and objects (reminder)
	Slide 10: Classes and objects (reminder)
	Slide 11: Java variables: a howto
	Slide 12: Variable types in Java
	Slide 13: Three types of variables
	Slide 14: Three types of variables
	Slide 15: Intermezzo : compilation error
	Slide 16: What is a compilation error ?
	Slide 17: Errors: examples
	Slide 18: End of intermezzo
	Slide 19: Basic Java instructions for variables
	Slide 20: Operations using variables
	Slide 21: Variables and logic
	Slide 22: More advanced Java syntax
	Slide 23: Strings
	Slide 24: Arrays
	Slide 25: Arrays
	Slide 26: Operations with arrays
	Slide 27: Variables stored in memory
	Slide 28: Variables stored in memory
	Slide 29: Conditional execution (if-then-else)
	Slide 30: While loops
	Slide 31: For loop
	Slide 32: Methods in Java
	Slide 33: Why methods?
	Slide 34: Attributes and methods
	Slide 35: Variables, attributes, parameters
	Slide 36: Attributes, methods, and parameters
	Slide 37: Attributes, methods, and parameters
	Slide 38: Attributes and methods
	Slide 39: Variable references in Java
	Slide 40: Examples
	Slide 41: Procedures and functions
	Slide 42: Methods and signatures
	Slide 43: Example: compute 1+2+...+100
	Slide 44: Special methods in Java
	Slide 45: Special methods: Constructors
	Slide 46: Constructors: howto
	Slide 47: Default constructors
	Slide 48: The String toString() method
	Slide 49: String toString() for Pokemon
	Slide 50: Getters and setters
	Slide 51: The main method
	Slide 52: Static attributes and methods
	Slide 53: Static attributes and methods
	Slide 54: Accessing static attributes

