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FROM PREVIOUS LECTURE

 Pairings

 Powerful tool, based on bilinearity

 Not always easily computable

 Makes solving DDH trivial; new assumptions: CBDH, 
DBDH

 Identity-Based Encryption (IBE)

 Encrypt using the public identity of the receiver 

 Require global setup to deal with secret key generation

 Boneh/Franklin: IND-CPA using pairings, in the ROM

 IND-CCA security based on IBE

 Signature Schemes

 Signatures in the standard model: BSW



PART I

RECAP: REDUCTIONS



UNDERSTANDING A REDUCTION

 Typical statement to prove:

 If there exists adversary A winning game 𝔾𝐴 with 
probability 𝑝𝐴, then there exists adversary B winning 
game 𝔾𝐵 with probability 𝑝𝐵 = 𝑓(𝑝𝐴).

 What happens in the proof

 We need to keep track of two games.

 In the main game (the one we need to analyse later), 
B plays against a challenger 𝐶𝐵

 In order to win its game, B must use adversary A

 But adversary A is like a machine: 
 It only works if given the right information

 Hence, B must provide that information



REDUCTIONS

𝐶𝐵 𝐵 = 𝐶𝐴 𝐴

Setup

Answer

Use Setup data to 

set up A Setup*



SIMULATING A’S GAME

 Why does B not simply play the game honestly?

 After all, if B plays A’s challenger as the challenger 

does, we are guaranteed that A works as usual!



SIMULATING A’S GAME

 Why does B not simply play the game honestly?

 After all, if B plays A’s challenger as the challenger 

does, we are guaranteed that A works as usual!

 Yes… but…

 Remember B plays his own game. He wants to win 

his own game, and so he has to learn something about 

the secrets that 𝐶𝐵 generated

 The only way B can do this is by injecting parts of his 

own setup or oracle output into A’s queries



SIMULATING A’S GAME

 Setup:

 B must set up the game for A

 B may use some of its own setup information, like a 

public key, or it may not

 Queries:

 For each of A’s oracle queries, B must answer the 

query as A’s challenger would

 If B answers badly, A may, or may not realise it

 However, if B’s answer is statistically wrong for the 

query, this influences A’s success probability

 Our goal: simulating A’s queries as well as possible



REDUCTIONS

𝐶𝐵 𝐵 = 𝐶𝐴 𝐴

Setup

Answer

Use Setup data to 

set up A
Setup*

Query

Answer query



ANSWERING QUERIES

 How does B answer A’s queries?

 Option 1: B acts as an honest challenger – the output is 
perfectly simulated for A

 Option 2: B uses its own oracle queries to 𝐶𝐵 in order to 
answer to A

 Option 3: B makes up the answer itself, usually injecting 
part of the challenge

 In general – and it’s not a rule:

 We use option 1 whenever B answers queries not relevant to 
A’s challenge query 

 We use option 2 in real-from-random indistinguishability 
(for A and/or B) 

 We use option 3 when we still have parts of B’s setup that 
were not injected into the game



REDUCTIONS

𝐶𝐵 𝐵 = 𝐶𝐴 𝐴

Setup

Answer

Use Setup data to 

set up A Setup*

Answer query

Query
Queries

Challenge



ANSWERING CHALLENGE QUERY

 A makes a special challenge query in its game

 B has to answer that query, simulating A’s challenger

 Option 1: Use A’s challenge to generate B’s own challenge

 Option 2: Inject B’s Setup information into the response

 Option 3: Generate challenge honestly towards receiving and 

using the returned response

 A might make more oracle queries

 B might use a different oracle response strategy after chg.

 Finally, A sends B a response to its challenge

 B needs to use this response to answer its challenger’s 

challenge



REDUCTIONS

𝐶𝐵 𝐵 = 𝐶𝐴 𝐴

Setup

Answer

Use Setup data to set 

up A
Setup*

Answer query
Query Queries

Chg query

Challenge
Process query

Challenge

ResponseProcess response



ANALYSIS

 After describing reduction (adversary B), we need to 

analyse its success probability

 Note: adversary A only succeeds with its usual probability 

if B’s simulation is statistically flawless

 Otherwise, A only wins with trivial probability

 Probability usually computed based on conditional proba-

bilities. We condition on an event 𝐸 (for instance, that 𝐶𝐵
chooses a bit = 1). Then:

ℙ 𝐵 wins 𝔾𝐵 = ℙ 𝐵 wins 𝔾𝐵 | 𝐸 ℙ 𝐸 + ℙ 𝐵 𝑤𝑖𝑛𝑠 𝔾𝐵 ¬𝐸] ℙ[¬𝐸]



PART II

AUTHENTICATION



AUTHENTICATION/IDENTIFICATION

 Setting, 2 parties : 

 Prover: party associated with some private parameters 

that are user-specific

 Verifier: party that is entitled to verify the legitimacy of 

provers 

 Goal: want provers to be authenticated as legitimate 

by the verifier

 Example: 

 Passports for travelling, KorriGo card

 Unlocking your car, parking meters

 Username/Password, PIN codes – banking/ phones



AUTHENTICATION VS IDENTIFICATION

 A passport identifies

 A badge (one of many valid ones) authenticates

 Authentication: verifier can establish that the 

prover is legitimate, but it does not learn the 

identity of that prover. Output is an accept/reject 

bit

 Identification: verifier can establish the prover’s 

identity, amidst several legitimate provers. 

Output is identity 𝐼𝐷



AUTHENTICATION

 Functionality/Correctness:

 Legitimate prover can always authenticate to the verifier

 Security:

 No illegitimate prover can authenticate to the verifier

Prover Verifier

Authentication



THE PRIMITIVE

 Authentication can be either symmetric or public-

key, depending on infrastructure and resources

 Symmetric-key authentication: 

 KGen 1𝜆 : on input a security parameter, outputs a

symmetric key s𝑘 to both parties

 Prove(𝑠𝑘): on input the secret key this algorithm runs

the prover’s part of the algorithm 

 Verify(𝑠𝑘): on input the secret key, this algorithm runs

the verifier’s part of the algorithm

 Algorithms (Prove, Verify) are run together as a tuple



SECURITY IN AUTHENTICATION

 Correctness: ∀ 𝑠𝑘 ← KGen(1𝜆), running Prove and 

Verify together on input 𝑠𝑘 yields 1

 Security: 

 The adversary is a Man-in-the-Middle

 It can communicate with the Prover and the Verifier

 Its goal is to be authenticated by the Verifier

 Let’s talk about trivial attacks



RELAY ATTACKS

𝑠𝑘𝑠𝑘

𝑀1

𝑀1

 Relay attacks bypass any kind of cryptography: encryp-

tion, hashing, signatures, etc.

 Countermeasure: distance bounding protocols (not 

covered in tis course)

Prover Verifier

𝑀2

𝑀2



FORMALIZING THE SECURITY MODEL

𝑠𝑘𝑠𝑘

Prover Verifier

 Challenger first generates the secret key (and keeps it)

 Protocol is run in sessions with two parties (one plays 
the role of the prover, the other the role of the verifier)

 Prover-adversary OR adversary-verifier

 Adversary can send messages in prover-adv. or adv.-
verifier sessions



FORMALIZING THE MODEL

𝑠𝑘𝑠𝑘

Prover Verifier

 Challenger first generates the secret key (and keeps it)

 Adversary can initiate sessions (P-A or A-V)

 If A wants to see honest prover-verifier sessions, it can open 
a prover-adversary session and an adversary-verifier session 
and then relay communication between the sessions

 Winning: A succeeds in A-V session, without relaying



ORACLES

 Adversary can initiate sessions (P-A or A-V)

 If A wants to see honest prover-verifier sessions, it can open a 

prover-adversary session and an adversary-verifier session and 

then relay communication between the sessions

 Oracle:

 Session handles:

 In practice a unique index, like a number, which serves 

to identify one session for another

 We call it handle because we use it to handle the session

 NewSession(∗): input either 𝑃1 = Prover or 𝑃2 = Verifier

outputs session “handle” 𝜋



MORE ORACLES

 Say we create a new session with the prover.

 𝜋1 ← NewSession(𝑃1)

 We want A to communicate with the prover in session 𝜋1
 It will not be the prover answering, but the challenger

 Need a second oracle for sending messages

 Oracle:

 Send(𝜋1, Prompt): if prover starts the protocol, output the 
first protocol message; else, output ⊥

 Send(∗,∗): input handle 𝜋 and message 𝑚 ∈ 𝑀 ∪ {Prompt}

transmits 𝑚 to partner in 𝜋, outputs 𝑚′



MORE ORACLES

 Now A can initiate sessions and talk to its partner

 Every time A sends a message to its partner, the 

other party responds with a message (or with \bot in 

case of aborts or errors)

 In an A-V session, V computes authentication/ 

rejection bit

 This bit is not always sent in clear

 But we can give A an oracle to find out what it is

 Oracle:

 Result(∗): on input a handle 𝜋 with partner 𝑃2, output

1 if 𝑃2 accepted partner in 𝜋, 0 if partner

is rejected, and ⊥ otherwise



ORACLES FOR IMPERSONATION

 Oracles: 

 NewSession(∗): input either 𝑃1 = Prover or 𝑃2 = Verifier

outputs session “handle” 𝜋

 Send(∗,∗): input handle 𝜋 and message 𝑚 ∈ 𝑀 ∪ {Prompt}

transmits 𝑚 to partner in 𝜋, outputs 𝑚′

 Result(∗): on input a handle 𝜋 with partner 𝑃2, output

1 if 𝑃2 accepted partner in 𝜋, 0 if partner

is rejected, and ⊥ otherwise



PARAMETERS AND WINNING

 Parameters:

 Number of sessions with prover: 𝑞𝑃
 Number of sessions with verifier: 𝑞𝑉
 Max number of prover-verifier sessions A can run: 

min 𝑞𝑝, 𝑞𝑉

 Winning:

 The result of at least one A-V session is 1

 And for that session there is no relaying to a P-A session

 No relaying: just compare session transcripts



SECURITY GAME

 Impersonation Security:

𝑠𝑘 ← KGen(1𝜆)

Stop ← 𝐴NewSession ∗ .Send ∗,∗ ,Result ∗ 1𝜆

A wins iff.: ∃ 𝜋∗ ← NewSession(𝑃2) such that:

Result 𝜋∗ = 1 and ∀ 𝜋 ← NewSession (𝑃1)

s.t. the query is made between the creation of

𝜋∗ and its termination (last message) it holds:

Transcript 𝜋∗ ≠ Transcript(𝜋)

 Parametrization:

 Protocol is (𝑞𝑃, 𝑞𝑉 , 𝜖)-impersonation secure iff. ∀ 𝐴 with at 

most 𝑞𝑃 NewSession(𝑃1) queries and at most 𝑞𝑉 queries

to 𝑁𝑒𝑤𝑠𝑒𝑠𝑠𝑖𝑜𝑛 (𝑃2) wins w.p. at most 𝜖.



AN AUTHENTICATION PROTOCOL

𝑠𝑘

Choose
chg ← PRG(seed)

seed

chg

rsp ← PRF𝑠𝑘(chg)

rsp Authenticate iff.:
rsp == PRF𝑠𝑘(chg)

𝑠𝑘

 The seed is only generated once

 Take PRG: 0,1 seed → 0,1 𝑛 PRF: 0,1 𝑠𝑘 × 0,1 𝑛 → 0,1 𝑚



IMPERSONATION SECURITY THEOREM

 Theorem:

 For any (𝑞𝑃, 𝑞𝑉, 𝜖𝐴)-adversary A against the imperso-
nation security of the Challenge-Response protocol…

 … There exist adversaries 𝐵 against the pseudoran-
domness of  PRG making at most 𝑞𝑉 PRG queries and 

winning with probability 
1

2
+ 𝜖PRG; and 𝐶 against the 

pseudorandomness of PRF winning with probability 
1

2
+ 𝜖PRF such that:

𝜖𝐴 ≤ 𝜖PRG +
𝑞𝑉
2
2− chg + 𝜖PRF + 𝑞𝑃(2

− chg + 2−|rsp|)

 Proof: by game hopping



GAME HOP #1 

 Game 𝔾0: initial Impersonation Security game

 Game 𝔾1: Change game 𝔾0 to replace output of

PRG in protocol by truly random numbers

 It holds that: 

ℙ 𝐴 wins 𝔾0 ≤ ℙ 𝐴 wins 𝐺1 + (ℙ 𝐴∗dist. 𝔾0 & 𝔾1 −
1

2
)

 What does it mean, distinguishing between 𝔾0, 𝔾1?

 B plays the ImpSec game with the true output of PRF if 

𝑏 = 1 and with random output otherwise

 At the end B has to guess the value of 𝑏



AN AUTHENTICATION PROTOCOL

𝑠𝑘

Choose
chg ← Rand(seed)

seed

chg

rsp ← PRF𝑠𝑘(chg)

rsp Authenticate iff.:
rsp == PRF𝑠𝑘(chg)

𝑠𝑘

 The seed is only generated once

 Take PRG: 0,1 seed → 0,1 𝑛 PRF: 0,1 𝑠𝑘 × 0,1 𝑛 → 0,1 𝑚



GAME HOP #1 

 Game 𝔾0: initial Impersonation Security game

 Game 𝔾1: Change game 𝔾0 to replace output of 

PRG by truly random numbers

 Statement: 

ℙ 𝐴 wins 𝔾0 ≤ ℙ 𝐴 wins 𝐺1 + (ℙ 𝐴∗dist. 𝔾0 & 𝔾1 −
1

2
)

 Why is this true?

 In fact, the only limitation A has in game 𝔾1 is the 

fact that it takes as input truly-random numbers; 

this translates to the advantage of adversary A*



GAME HOP #1 

 Game 𝔾0: initial Impersonation Security game

 Game 𝔾1: Change game 𝔾0 to replace output of 

PRG by truly random numbers

 Statement: 

ℙ 𝐴 wins 𝔾0 ≤ ℙ 𝐴 wins 𝐺1 + (ℙ 𝐴∗dist. 𝔾0 & 𝔾1 −
1

2
)

 Statement:

 ℙ 𝐴∗dist. 𝔾0 & 𝔾1 =
1

2
+ 𝜖PRG



GAME HOP #1 

 Game 𝔾0: initial Impersonation Security game

 Game 𝔾1: Change game 𝔾0 to replace output of 

PRG by truly random numbers

 Statement: 
ℙ 𝐴 wins 𝔾0 ≤ ℙ 𝐴 wins 𝐺1 + 𝜖PRG

 Proof:

 Suppose there exists A* distinguishing 𝔾0, 𝔾1.

 Construct B distinguishing output of PRG from random



GAME HOP #1

 Proof:
 Suppose there exists A* distinguishing 𝔾0, 𝔾1.

 Construct B distinguishing output of PRG from random

 B has to simulate the game for A* 

 The challenger for B generates 𝑠eed

 B generates 𝑠𝑘 & can make PRG queries to its challenger

 NewSession queries: B returns an identifier 𝜋

 Send(V, prompt) : B makes PRG query, returns output to A*

 Send(P, chg) : B computes PRF on A* ‘s input

 Send(V, rsp) : B returns ⊥ to A*; it computes 1 iff. for that

session rsp = PRF𝑠𝑘(chg); else it computes 0

 Result(∗): Return authentication bit if computed, or ⊥



PROOF OF GAME HOP #1

 Proof:

 The challenger for B generates 𝑠eed and random bit 𝑏

 B generates 𝑠𝑘 & can make PRG queries to its challenger

 NewSession queries: B returns an identifier 𝜋

 Send(V, prompt) : B makes PRG query, returns output to A*

 Send(P, chg) : B computes PRF on A* ‘s input

 Send(V, rsp) : B returns ⊥ to A*; it computes 1 iff. for that

session rsp = PRF𝑠𝑘(chg); else it computes 0

 Result(∗): Return authentication bit if computed, or ⊥

 Finally, A* returns a guess 𝑑∗ (0 if A* thinks it’s playing 

game 𝔾0, 1 otherwise)

 B receives this bit and sends its challenger a guess  𝑑∗



PROOF OF GAME HOP #1

 Analysis:

 The challenger for B generates 𝑠eed and random bit 𝑏

 B generates 𝑠𝑘 & can make PRG queries to its challenger

 NewSession queries: B returns an identifier 𝜋

 Send(V, prompt) : B makes PRG query, returns output to A*

 Send(P, chg) : B computes PRF on A* ‘s input

 Send(V, rsp) : B returns ⊥ to A*; it computes 1 iff. for that

session rsp = PRF𝑠𝑘(chg); else it computes 0

 Result(∗): Return authentication bit if computed, or ⊥

 Finally, A* returns a guess 𝑑∗ (0 if A* thinks it’s playing game 𝔾0, 1
otherwise)

 B receives this bit and sends its challenger a guess  𝑑∗

 If B’s challenger chooses 𝑏 = 1, then it outputs PRG queries, and B 

simulates perfectly 𝔾0; else, it perfectly simulates game 𝔾1

 B succeeds as well as A succeeds



GAME HOP #1

 Conclusion:

ℙ 𝐴∗ distinguishes ൗ
𝔾0

𝔾1
= ℙ 𝐵 wins PRG game

=
1

2
+ 𝜖PRG

 Which leads to:

ℙ 𝐴 wins 𝔾0 ≤ ℙ 𝐴 wins 𝐺1 + 𝜖PRG



GAME HOP #2 

 Game 𝔾0: initial Impersonation Security game

 Game 𝔾1: Change game 𝔾0 to replace output of  PRG

by truly random numbers

 Game 𝔾2: Change game 𝔾1 such that the truly ran-

dom numbers output in 𝔾1 never repeat

 We had: 
ℙ 𝐴 wins 𝔾0 ≤ ℙ 𝐴 wins 𝐺1 + 𝜖PRG

 Statement: 

ℙ 𝐴 wins 𝔾1 ≤ ℙ 𝐴 wins 𝐺2 +
𝑞𝑉
2

2−|chg|



PROOF GAME HOP #2 

 Game 𝔾0: initial Impersonation Security game

 Game 𝔾1: Change game 𝔾0 to replace output of  PRG

by truly random numbers

 Game 𝔾2: Change game 𝔾1 such that the truly ran-

dom numbers output in 𝔾1 never repeat

 Statement: 

ℙ 𝐴 wins 𝔾1 ≤ ℙ 𝐴 wins 𝐺2 +
𝑞𝑉
2

2−|chg|

 Proof:

 Games 𝔾1 and 𝔾2 are indistinguishable unless there is a 

collision of randomness in 2 out of a total of 𝑞𝑉 sessions



GAME HOP #3

 Game 𝔾0: initial Impersonation Security game

 Game 𝔾1: Replace PRG by truly random generator

 Game 𝔾2: Eliminate collision in PRG output

 Game 𝔾3: Same as game 𝔾2 except we abort if A antici-

pates PRG output before actually seeing it

That is, A guesses a challenge in advance

 Statement: 

ℙ 𝐴 wins 𝔾2 ≤ ℙ 𝐴 wins 𝐺3 + 𝑞𝑃 ⋅ 2
−|chg|

 Proof:

 Games 𝔾2 and 𝔾3 are indistinguishable unless we abort. 

That happens w.p. 2−|chg| for each of the 𝑞𝑃 sessions



GAME HOP #4

 Game 𝔾0: initial Impersonation Security game

 Game 𝔾1: Replace PRG by truly random generator

 Game 𝔾2: Eliminate collision in PRG output

 Game 𝔾3: Eliminate chg-guessing probability 

 Game 𝔾4: Replace PRF output by truly random values

 Statement: 

ℙ 𝐴 wins 𝔾3 ≤ ℙ 𝐴 wins 𝐺4 + 𝜖PRF
 Proof:

 Games 𝔾3 and 𝔾4 are indistinguishable except if there 

exists an adversary to distinguish the output of PRF from 

random – like the reduction 𝔾0 to 𝔾1



WHERE WE ARE

Choose
chg ← Rand1()chg

rsp ← Rand2(chg)

rsp Authenticate iff.:
rsp == Rand2(chg)

 At every step we idealized the protocol little by little

 Game 𝔾4: Take each of A’s 𝑞𝑉 sessions with the verifier

A can only win if it sends rsp for fresh chg

However: rsp is truly random; so A can only guess



CONCLUDING THE PROOF

 We had:

ℙ 𝐴 wins 𝔾0 ≤ ℙ 𝐴 wins 𝐺1 + 𝜖PRG

ℙ 𝐴 wins 𝔾1 ≤ ℙ 𝐴 wins 𝐺2 +
𝑞𝑉
2

2−|chg|

ℙ 𝐴 wins 𝔾2 ≤ ℙ 𝐴 wins 𝐺3 + 𝑞𝑃 ⋅ 2
−|chg|

ℙ 𝐴 wins 𝔾3 ≤ ℙ 𝐴 wins 𝐺4 + 𝜖PRF

ℙ 𝐴 wins 𝔾4 = 𝑞𝑉 ⋅ 2
−|rsp|

 Putting it all together:

ℙ 𝐴 wins 𝔾0 ≤ 𝜖PRG +
𝑞𝑉
2

2− chg + 𝜖PRF + 𝑞𝑃(2
− chg + 2−|rsp|)



PART III

THE SIMULATION APPROACH



GAME-BASED MODELS

 Adversary plays the game against the challenger

 Learning is done by Oracle access to primitives

 There is a challenge request from the adversary, 

a challenge from C, and a response from A

 Winning: the response “fits” the challenge and we 

rule out some attacks (response or learning have 

to have certain forms/bounds)

 Trivial attacks: basically, guessing the correct 

input for the response and/or challenge



SIMULATION-BASED MODELS

 Usually express a non-discrete security guarantee :

 “The adversary can’t learn anything about a plaintext 

except its length”

 “The adversary learns nothing about the identity of the 

authenticating user”

 Usually the attack is designed to protect data from 

one or more of the participants

 Insider attacks: the adversary is one of the parties

 Collusion attacks: one or multiple attackers collude with 

each other – for instance one insider and many outsiders

 Much harder to prove security in such a model



TYPICAL EXAMPLES

 Secure multi-party computation

 Goal: two or more parties compute some output based 
on input from all parties

 This is not always the same output

 None of the parties learns anything about the other 
parties’ input

 Typical example: the 2 millionaires’ problem:

 Two rich people want to know which one of them is 
richer, but without revealing their fortunes

 Output to compute: the expression “a > b” or “b > a”

 Sometimes (in the case of some wedding rituals) 
offering too little dowry or giving the father too little 
by way of a present may result in homicide!



TYPICAL SECURITY DEFINITION

 Two types of adversaries:

 Honest-but-curious: this adversary does not deviate 

from protocol, but will try to learn what it can from 

the output

 Malicious: such adversaries may even deviate from 

protocol (for instance by choosing input different from 

their own, or deviant from honest distributions) in 

order to learn something about the other parties’ 

inputs



2-PARTY HBC DEFINITIONS

 Ingredients

 Functionality: 𝑓: 0,1 ∗ × 0,1 ∗ → 0,1 ∗ × 0,1 ∗

 It takes 2 inputs (one from each party)

 And outputs 2 outputs (one for each party)

 View:

 Each party has a view, consisting of their secret, 

denoted 𝑤𝑖, their randomness, denoted 𝑟𝑖 and the 

messages they receive 𝑚𝑖,1, … ,𝑚𝑖,𝑛 for each protocol 

execution

 Output: 

 Given its view, each participant computes Output𝑖



2-PARTY HBC DEFINITION

 A protocol 𝜋 securely computes functionality 𝑓 =
(𝑓1, 𝑓2) in the presence of static semi-honest 
adversaries if there exist simulators 𝑆1, 𝑆2 such that:

{(𝑆1 1𝜆, 𝑥, 𝑓1 𝑥, 𝑦 , 𝑓 𝑥, 𝑦 }𝑥,𝑦,𝜆≅𝐶 {(𝑣𝑖𝑒𝑤1 𝑥, 𝑦, 𝑛 , output 𝑥, 𝑦, 𝑛 }𝑥,𝑦,𝜆

{(𝑆2 1𝜆, 𝑦, 𝑓2 𝑥, 𝑦 , 𝑓 𝑥, 𝑦 }𝑥,𝑦,𝜆≅𝐶 {(𝑣𝑖𝑒𝑤2 𝑥, 𝑦, 𝑛 , output 𝑥, 𝑦, 𝑛 }𝑥,𝑦,𝜆

for any x,y of same size


