
THE POWER OF PAIRINGS TOWARDS

STANDARD MODEL SECURITY

Pairings, IBE, IND-CCA-secure encryption, 

authentication



FROM PREVIOUS LECTURE

 Public-key Crypto

 Alternative to symmetric key primitives

 Do not require sharing keys, but they require a PKI

 PKE

 Comes in 2 flavours: IND-CPA and IND-CCA

 Saw 1 constrution based on DDH that is IND-CPA

 Malleability implies no IND-CCA

 Signature Schemes

 Security: EUF-CMA

 RSA signatures are not EUF-CMA

 But we could use FDH in the random oracle model



PART I

PAIRINGS



PAIRINGS IN GENERAL

 Setting : 

 2 additive groups 𝐺1, 𝐺2, multiplicative group 𝐺𝑇

 All three groups of prime order 𝑞

 We can write 𝐺1 =< 𝑃,…q𝑃 > and 𝐺2 =< 𝑄,… , q𝑄 >

 Imagine a mapping 𝑒: 𝐺1 × 𝐺2 → 𝐺𝑇 such that:

 Bilinear: for all a, b ∈ {1,… , 𝑞 − 1} it holds that:

𝑒 a𝑃, b𝑄 = 𝑒(𝑃, 𝑄)𝑎𝑏

 Non-degenerate: 𝑒(𝑃, 𝑄) ≠ 1

 Efficiently computable



PAIRINGS IN CRYPTOGRAPHY

 Usually computed on elliptic curves

 There are different types, depending on how the 

pairing is constructed

 Security depends on type and on something called 

“embedding degree”

 Mostly defined with elements from additive 

subgroups (rather than multiplicative ones), but we 

will keep the multiplicative notation

 We will not cover specifics in this course

 If you’re interested, you could read: 

Lawrence C. Washington: 

‘Elliptic curves: Number theory and cryptography’



DDH AND PAIRINGS

 Consider multiplicative group 𝔾 =< 𝑔 > of prime 

order 𝑞, and a pairing 𝑒: 𝔾 × 𝔾 → 𝔾𝑇 on this group

 Given 𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐 DDH problem requires to decide 

whether 𝑔𝑐 = 𝑔𝑎𝑏 or 𝑔𝑐 just random element

 Bilinearity: 𝑒 𝑔𝑎 , 𝑔𝑏 = 𝑒(𝑔, 𝑔)𝑎𝑏 = 𝑒(𝑔, 𝑔𝑎𝑏)

 DDH adversary tests whether 𝑒 𝑔𝑎 , 𝑔𝑏 = 𝑒(𝑔, 𝑔𝑐)

 If so, then guess that 𝑔𝑐 = 𝑔𝑎𝑏

 Else, output that 𝑔c is random

 Conclusion: DDH is easy to solve in groups that 

admit pairings



HARD PROBLEMS WITH PAIRINGS

 Setup: multiplicative group 𝔾 =< 𝑔 > of prime 

order 𝑞, given a bilinear mapping 𝑒: 𝔾 × 𝔾 → 𝔾𝑇

 Computational Bilinear DH problem:

 Given (𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐), compute 𝑔𝑎𝑏𝑐

 Decisional Bilinear DH problem

 Given (𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐 , 𝑔𝑧), decide whether 𝑔𝑧 = 𝑔𝑎𝑏𝑐

 CDH and DLog:

 We think these are still hard despite pairings



WHY WE USE PAIRINGS

Alice Bob

Choose

b ∈𝑅 {0, … , 𝑞 − 1}

𝐴 = a𝑃

Choose

a ∈𝑅 {0, … , 𝑞 − 1}

𝐵 = b𝑃

Compute

𝐾 = a𝐵

Compute

𝐾 = b𝐴

Same 𝐾: 

b𝐴 = ba𝑃 = ab𝑃 = a𝐵

Alice

BobCharlie

a ∈𝑅 {0, … , 𝑞 − 1}

𝐴1 = 𝑎𝑃; 𝐴2 = 𝑎𝑄

c ∈𝑅 {0, … , 𝑞 − 1}

𝐶1 = 𝑐𝑃; 𝐶2 = 𝑐𝑄

b ∈𝑅 {0, … , 𝑞 − 1}

𝐶1 = 𝑏𝑃; 𝐶2 = 𝑏𝑄

𝑨𝟏, 𝑨𝟐

𝑪𝟏, 𝑪𝟐 𝑩𝟏, 𝑩𝟐



THREE-PARTITE KEY EXCHANGE

Alice Bob

Choose

b ∈𝑅 {0, … , 𝑞 − 1}

𝐴 = a𝑃

Choose

a ∈𝑅 {0, … , 𝑞 − 1}

𝐵 = b𝑃

Compute

𝐾 = a𝐵

Compute

𝐾 = b𝐴

Same 𝐾: 

b𝐴 = ba𝑃 = ab𝑃 = a𝐵

Alice

BobCharlie

𝐾 = 𝑒( 𝐵1, 𝐶2 )
𝑎 =

𝑒(𝑏𝑃, 𝑐𝑄)𝑎 = 𝑒(𝑃, 𝑄)𝑎𝑏𝑐

𝑨𝟏, 𝑨𝟐

𝑪𝟏, 𝑪𝟐 𝑩𝟏, 𝑩𝟐

𝐾 = 𝑒( 𝐴1, 𝐵2 )
𝑐 =

𝑒(𝑎𝑃, 𝑏𝑄)𝑐 =
𝑒(𝑃, 𝑄)𝑎𝑏𝑐

𝐾 = 𝑒( 𝐶1, 𝐴2 )
𝑏=

𝑒(𝑃, 𝑄)𝑎𝑏𝑐



PART II

IDENTITY-BASED ENCRYPTION



PKE AND IBE

 PKE:

 Alice has a private key for decryption

 Bob (and everyone else) has a public key for 

encryption to Alice

 Problem of certification: whose key is that?

 IBE:

 Bob has (a function of) Alice’s  identity (name, email 

address, social security number) as a PK

 Alice can derive a secret key from that

 Bob encrypts with Alice’s identity, so only she can 

decrypt



IBE SYNTAX

 Tuple of algorithms (Setup, KGen, Enc, Dec) with:

 Setup(1𝜆): on input the security parameter, this algorithm

outputs (𝑀𝑆𝐾, 𝑃𝑃𝑎𝑟), a master secret key and

some global parameters

 KGen(𝑀𝑆𝐾, 𝐼𝐷) : on input the master secret key and the 

identity, this algorithm outputs an 

identity-specific secret key 𝑠𝑘𝐼𝐷

 Enc(𝐼𝐷;𝑀): on input an identity and a message, output a 

ciphertext 𝑐

 𝐷𝑒𝑐(𝑠𝑘𝐼𝐷, 𝑐): on input the identity-specific 𝑠𝑘𝐼𝐷 and a cipher-

text, output plaintext ෝ𝑚 or symbol ⊥



IBE SETUP

 Why do we need a setup algorithm for IBE and 

not for regular PKE?



IBE SETUP

 Why do we need a setup algorithm for IBE and 

not for regular PKE?

 Not because we need 𝑀𝑆𝐾 to generate our secret 

keys with

 After all, each user could just generate 𝑠𝑘𝐼𝐷 as we 

do in regular PKE, right?



IBE SETUP

 Why do we need a setup algorithm for IBE and not 

for regular PKE?

 Not because we need 𝑀𝑆𝐾 to generate our secret 

keys with

 After all, each user could just generate 𝑠𝑘𝐼𝐷 as we 

do in regular PKE, right?

 Wrong!

 We need to ensure that the parameters are chosen 

well, so that there’s no clash for 𝑠𝑘𝐼𝐷 !



PAIRING BASED IBE

 Designed by Boneh and Franklin in 2001

 Ingredients:

 Identity space 𝕀𝔻

 A hash function (will see it later)

 A bilinear mapping

 Setup outputs:

 A couple of groups 𝔾,𝔾𝑇 of prime order 𝑞

 A secret value 𝑦 ∈ {1, 2, … , 𝑞 − 1}

 A generator 𝑔 for 𝔾, and the value 𝑔𝑦

 A hash function 𝐻: 𝕀𝔻 → 𝔾

 Set 𝑀𝑆𝐾 = 𝑦 ; 𝑃𝑃𝑎𝑟 = (𝔾,𝔾𝑇 , 𝑔, 𝑔𝑦 , 𝐻)



BONEH-FRANKLIN IBE

 𝑀𝑆𝐾 = 𝑦 ; 𝑃𝑃𝑎𝑟 = (𝔾,𝔾𝑇 , 𝑔, 𝑔𝑦 , 𝐻)

 ID-specific secret key generation:

 Takes input 𝑦, 𝐼𝐷

 Output 𝑠𝑘𝐼𝐷 = 𝐻 𝐼𝐷 𝑦 ∈ 𝔾

 Encryption:

 Takes input 𝑚, 𝐼𝐷

 Choose random 𝑟 ∈ {1,… , 𝑞 − 1}, compute 𝑔𝑟

 Output: 𝑐 = ( 𝑔𝑟 , 𝑚 ⋅ 𝑒 𝐻 𝐼𝐷 , 𝑔𝑦 𝑟 )

 Decryption:

 Takes input 𝑐 = (𝑐1, 𝑐2), 𝑠𝑘𝐼𝐷

 Compute: ൗ
𝑐2

𝑒(𝐻 𝐼𝐷 𝑦,𝑔𝑟) = ෝ𝑚



SECURITY OF BONEH-FRANKLIN

 Theorem:

 BF is IND-CPA in the random oracle model if the 

Decisional Bilinear DH problem is hard in 𝔾

 Translation:

 In the random oracle model

 If there exists an adversary that wins the IND-CPA 

game against the BF scheme with probability 
1

2
+ 𝑝𝐴

 Then there exists an adversary B that can solve the 

DBDH problem in 𝔾 with probability 
1

2
+

1

2 𝑞𝐻
𝑝𝐴, 



IND-CPA FOR IBE

 IND-CPA: eavesdropper can’t tell even 1 bit of p-text

𝑀𝑆𝐾, 𝑃𝑃𝑎𝑟 ← Setup (1𝜆)

𝑏 ←$ 0,1

𝑚0 , 𝑚1, 𝐼𝐷 ←A𝐾𝐺𝑒𝑛 ⋅ ,𝐻(⋅) (𝑃𝑃𝑎𝑟, 1𝜆)

𝑐 ← Enc(𝐼𝐷;𝑚𝑏)

𝑑 ←A𝐾𝐺𝑒𝑛(⋅)(𝑐, 𝑃𝑃𝑎𝑟, 1𝜆)

A wins iff. 𝑑 = 𝑏 and KGen(𝐼𝐷) never queried

Parameter: 𝑞𝐻 RO queries

 Intuition: we will need the ROM in order to make sure 

that the small entropy from identifiers translates to a 

LOT of entropy for the secret keys



PROOF OF IND-CPA OF BF

 Proof:

 B’s goal is to distinguish between (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐 , 𝑔𝑎𝑏𝑐) and 

(𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐 , 𝑔𝑧)

 B’s strategy will be to inject the challenge into a single 

identity 𝐼𝐷; then B will hope that A will output THAT 

identity for the challenge

 Constructing B:

 Receives (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑧) with 𝑧 random or 𝑧 = 𝑎𝑏𝑐

 Begin by running Setup, need to output 𝑃𝑝𝑎𝑟 to A

 Insert 𝑔𝑦 = 𝑔𝑎, output 𝔾,𝔾𝑇 , 𝑔, 𝑔𝑎 , 𝐻 to A

 A can now make 𝐾𝐺𝑒𝑛 and 𝐻 queries

 The former outputs secret keys, but not for the challenge ID

 The latter allows to just hash identities (in the ROM)



PROOF OF IND-CPA OF BF

 Proof (continued):

 Constructing B:

 Receives (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑧) with 𝑧 random or 𝑧 = 𝑎𝑏𝑐

 Begin by running Setup, need to output 𝑃𝑝𝑎𝑟 to A

 Insert 𝑔𝑦 = 𝑔𝑎, output 𝔾,𝔾𝑇 , 𝑔, 𝑔𝑎 , 𝐻 to A

 A can now make 𝐾𝐺𝑒𝑛 and 𝐻 queries

 B: guesses a random index: 𝑖 ∈ {1, … , 𝑞𝐻}

 Answer to H queries (programming RO):

On 𝑗-th query, 𝑗 ≠ 𝑖, pick random 𝑟𝑗, output 𝐻 𝑥 = 𝑔𝑣

On 𝑖-th query, insert 𝐻 𝑥 = 𝑔𝑏

 Answer to KGen queries:

B knows DLog of of all 𝐻(𝑥), except for the 𝑖-th query

But A can’t query the 𝑆𝐾 for that if it’s his challenge 



PROOF OF IND-CPA OF BF

 Proof (continued):

 Constructing B:

 Receives (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑧) with 𝑧 random or 𝑧 = 𝑎𝑏𝑐

 Running Setup, output 𝔾,𝔾𝑇 , 𝑔, 𝑔𝑎 , 𝐻 to A

 Answer to queries:

 B: guesses a random index: 𝑖 ∈ {1, … , 𝑞𝐻}

 Answer to H queries (programming RO):

On 𝑗-th query, 𝑗 ≠ 𝑖, pick random 𝑟𝑗, output 𝐻 𝑥 = 𝑔𝑟𝑗

On 𝑖-th query, insert 𝐻 𝑥 = 𝑔𝑏

 Answer to KGen queries:

On 𝑗-th query, output 𝑆𝐾𝐼𝐷 = (𝑔𝑎)𝑟𝑗 = 𝐻 𝑥 𝑎

On 𝑖-th query, abort

 A’s challenge: A outputs (𝑚0, 𝑚1, 𝐼𝐷)

 If 𝐼𝐷 was not 𝑖-th query, abort

 Else: choose random 𝑏∗, output (𝑔𝑐, 𝑀𝑏∗ ⋅ 𝑒(𝑔, 𝑔
𝑧))



PROOF OF IND-CPA OF BF

 Proof (continued):
 Receives (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑧) with 𝑧 random or 𝑧 = 𝑎𝑏𝑐

 Running Setup, output 𝔾,𝔾𝑇 , 𝑔, 𝑔𝑎 , 𝐻 to A

 Answer to queries:

 B: guesses a random index: 𝑖 ∈ {1, … , 𝑞𝐻}

 Answer to H queries (programming RO):

On 𝑗-th query, 𝑗 ≠ 𝑖, pick random 𝑟𝑗, output 𝐻 𝑥 = 𝑔𝑟𝑗

On 𝑖-th query, insert 𝐻 𝑥 = 𝑔𝑏

 Answer to KGen queries:

On 𝑗-th query: 𝑆𝐾𝐼𝐷 = (𝑔𝑎)𝑟𝑗 = 𝐻 𝑥 𝑎; if 𝑗 = 𝑖, abort

 A’s challenge: A outputs (𝑚0, 𝑚1, 𝐼𝐷)

 If 𝐼𝐷 was not 𝑖-th query, abort and guess if 𝑧 = 𝑎𝑏𝑐 or not

 Else: choose random 𝑏∗, output (𝑔𝑐, 𝑀𝑏∗ ⋅ 𝑒(𝑔, 𝑔
𝑧))

 A’s response: guess 𝑑∗ of 𝑏∗

 B guesses 𝑧 = 𝑎𝑏𝑐 iff. 𝑑∗ = 𝑏∗



PROOF OF IND-CPA OF BF

 Proof (cont):

 Analysis:

 B chooses the wrong 𝑖 implies B had to guess (B wins w.p. 
1

2
)

Happens w.p. 1 −
1

𝑞𝐻

 B chooses the right 𝑖 implies:

If 𝑧 = 𝑎𝑏𝑐 simulation of game is perfect; A wins w.p. 
1

2
+ 𝑝𝐴

If 𝑧 is random, 𝑐 is statistically independent from 𝑚0, 𝑚1

A wins w.p. 
1

2

 B wins w.p.: 
1

𝑞𝐻
ℙ 𝐵 wins 𝐵 guesses right] + 1 −

1

𝑞𝐻
⋅
1

2
=

1

𝑞𝐻

1

2

1

2
+ 𝑝𝐴 +

1

2
⋅
1

2
+ 1 −

1

𝑞𝐻
⋅
1

2
=

1

2
+

1

2𝑞𝐻
𝑝𝐴



PART II

THE USES OF IBE



FUJISAKI-OKAMOTO

 Designed a “compiler”:

 Input: a PKE scheme that’s IND-CPA secure

 Output: a PKE scheme that’s IND-CCA secure

 Boneh and Franklin used it on their IND-CPA 
scheme, and obtained an IND-CCA one

 We won’t look at the generic compiler, but let’s see the 
IND-CCA version of BF!

 For interested readers, see:

Fujisaki, Okamoto “Secure integration of asymmetric 
and symmetric encryption schemes”, Crypto 99



CCA-SECURE IBE

 Setup outputs:

 A couple of groups 𝔾,𝔾𝑇 of prime order 𝑞

 A secret value 𝑦 ∈ {1, 2, … , 𝑞 − 1}

 A generator 𝑔 for 𝔾, and the value 𝑔𝑦

 Hash functions: 𝐻: 𝕀𝔻 → 𝔾, 𝐹: 0,1 𝑞 × 0,1 𝑞 → ℤ𝑞
∗ , 

𝐺: 0,1 𝜆 → 0,1 𝜆

 Set 𝑀𝑆𝐾 = 𝑦 ; 𝑃𝑃𝑎𝑟 = (𝔾,𝔾𝑇 , 𝑔, 𝑔𝑦 , 𝐹, 𝐺, 𝐻)

 ID-specific secret key generation:

 Takes input 𝑦, 𝐼𝐷

 Output 𝑠𝑘𝐼𝐷 = 𝐻 𝐼𝐷 𝑦 ∈ 𝔾



IND-CCA VERSION OF BF

 Setup: 𝑀𝑆𝐾 = 𝑦 ; 𝑃𝑃𝑎𝑟 = (𝔾,𝔾𝑇 , 𝑔, 𝑔𝑦 , 𝐹, 𝐺, 𝐻)

 Key generation: 𝑠𝑘𝐼𝐷 = 𝐻 𝐼𝐷 𝑦 ∈ 𝔾

 Encryption:

 Takes input 𝑚, 𝐼𝐷

 Choose random 𝑠 ∈ 0,1 𝑞, compute 𝑟 = 𝐹(𝑠,𝑚)

 Output: 𝑐 = ( 𝑔𝑟 , 𝑠 ⋅ 𝑒 𝐻 𝐼𝐷 , 𝑔𝑦 𝑟 , 𝑚 ⋅ 𝐺(𝑠) )

 Decryption:

 Takes input 𝑐 = 𝑐1, 𝑐2, 𝑐3 , 𝑠𝑘𝐼𝐷 = 𝐻 𝐼𝐷 𝑦

 Compute: ൗ
𝑐2

𝑒(𝐻 𝐼𝐷 𝑦,𝑔𝑠) = Ƹ𝑠

 Finally get ෝ𝑚 = ൗ
𝑐3

𝐺( Ƹ𝑠)



SECURITY STATEMENT

 Theorem:

 In the Random Oracle Model (𝐹, 𝐺,𝐻 all ROs)

 If the DBDH assumption holds in group 𝔾, then the 

modified Boneh-Franklin scheme is IND-CCA secure

 We will not prove this here

 Intuition: 𝑐2 hides 𝑠 like it hid 𝑚 before, and we use 𝑠
to hide 𝑚 in 𝑐3. We use 𝐹 to cryptographically bind 𝑟
to 𝑠, but since 𝐹 is a random oracle any change in 𝑠
creates a random 𝐹 output.



SIGNATURES IN THE STANDARD MODEL

 So far we’ve seen:

 IND-CPA-secure encryption in the standard model 

(no ROs required) – ElGamal

 IND-CPA-secure IBE in the ROM – Boneh-Franklin

 IND-CCA-secure IBE in the ROM – BF + FO 

 EUF-CMA signatures in the ROM using Full-domain 

hashing (FDH)

 Let’s see now:

 (strongly) EUF-CMA signatures without random 

oracles, using pairings



STRONG UNFORGEABILITY

 EUF-CMA: adversary can’t forge fresh signature

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑚 , 𝜎 ←ASign(∗) (𝑝𝑘, 1𝜆)

Store list ℚ = { 𝑚1, 𝜎1 , … (𝑚𝑘 , 𝜎𝑘)} of queries to Sign

A wins iff. 𝑚, ∗ ∉ ℚ and Vf 𝑝𝑘;𝑚, 𝜎 = 1

 sEUF-CMA: adversary can’t forge fresh signature

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑚 , 𝜎 ←ASign(∗) (𝑝𝑘, 1𝜆)

Store list ℚ = { 𝑚1, 𝜎1 , … (𝑚𝑘 , 𝜎𝑘)} of queries to Sign

A wins iff. 𝑚, 𝜎 ∉ ℚ and Vf 𝑝𝑘;𝑚, 𝜎 = 1



STRONG UNFORGEABILITY: BSW

 Boneh, Shen, Waters

 Ingredients: 

 Group 𝔾 of prime order 𝑞 such that 𝑒:𝔾 × 𝔾 → 𝔾𝑇, with 

𝔾 = < 𝑔 >

 Hash function 𝐻: 0,1 ∗ → 0,1 𝑛 such that 𝑞 > 2𝑛

 Key generation 𝐾𝐺𝑒𝑛:

 Choose secret 𝑦 ∈ {1,… , 𝑞 − 1}, compute 𝑔𝑦

 Choose public 𝑔∗, ℎ ∈ 𝔾, and random 𝑢∗, 𝑢1, … , 𝑢𝑛 ∈ 𝔾

 Set 𝑈 = {𝑢1, … , 𝑢𝑛} and pick 𝐻

 Output: 𝑃𝐾 = (𝑔, 𝑔𝑎 , 𝑔∗, ℎ, 𝑢∗, 𝑈, 𝐻) and 𝑆𝐾 = (𝑔∗)𝑦



STRONG UNFORGEABILITY: BSW

 𝐾𝐺𝑒𝑛 outputs 𝑃𝐾 = (𝑔, 𝑔𝑦, 𝑔∗, ℎ, 𝑢∗, 𝑈, 𝐻) and 𝑆𝐾 = (𝑔∗)𝑦

 Signing message 𝑚:

 Pick random 𝑟. 𝑠 ∈ ℤ𝑞 ; Set 𝜎2 = 𝑔𝑟 ∈ 𝔾

 Set 𝑡 ← 𝐻 𝑚 𝜎2 ∈ 0,1 𝑛; interpret 𝑡 as element of ℤ𝑞
 Do 𝑣 ← 𝐻 𝑔𝑡ℎ𝑠 ∈ 0,1 𝑛; write 𝑣 = 𝑣1…𝑣𝑛, with 𝑣𝑖 ∈ {0,1}

 Compute: 𝜎1 = (𝑔∗)𝑦(𝑢∗ ς𝑖=1
𝑛 𝑢𝑖

𝑣𝑖)𝑟, output (𝜎1, 𝜎2, 𝑠)

 Verification of signature (𝜎1, 𝜎2, 𝑠) for message 𝑚:

 Compute Ƹ𝑡 = 𝐻 𝑚 𝜎2 , encode it as element of ℤ𝑞

 Do ො𝑣 ← 𝐻 𝑔
𝑡ℎ𝑠 ∈ 0,1 𝑛; write 𝑣 = 𝑣1…𝑣𝑛, with 𝑣𝑖 ∈

{0,1}

 Verify: 𝑒 𝜎1, 𝑔 = 𝑒 𝜎2, 𝑢
∗ ς𝑖=1

𝑛 𝑢𝑖
𝑣𝑖 ⋅ 𝑒(𝑔𝑦 , 𝑔∗)



STRONG UNFORGEABILITY OF BSW

 Theorem:

 Given the hash function 𝐻 is collision resistant

 Given the CDH is hard to solve in group 𝔾

 Then the BSW scheme is strongly EUF-CMA

 Proof: 

 Goal of sEUF-CMA attacker: output tuple (𝑚∗, (𝜎1, 𝜎2, 𝑠))

such that 𝑚∗, 𝜎1, 𝜎2, 𝑠 ∉ 𝑄

 Divide forgeries in 3 types:

 Type I: 𝑣∗ = 𝑣 and 𝑡∗ = 𝑡 (reduce to CR of H)

 Type II: 𝑣∗ = 𝑣 and 𝑡∗ ≠ 𝑡 (reduce to DLog)

 Type III: 𝑣∗ ≠ 𝑣 (reduce to CDH)



PROOF – TYPE I FORGERIES

 sEUF-CMA adversary A outputs (𝑚∗, (𝜎1
∗, 𝜎2

∗, 𝑠∗)) such that 

𝑣∗ = 𝑣 and 𝑡∗ = 𝑡

 Build adversary B that breaks collision resistance of 𝐻

 Setup: B simply runs setup honestly, and picks 𝐻. Output 

𝑃𝐾 = (𝑔, 𝑔𝑦, 𝑔∗, ℎ, 𝑢∗, 𝑈, 𝐻) and 𝑆𝐾 = (𝑔∗)𝑦

 Signatures: B signs messages honestly

 Challenge: B receives A’s forgery (𝑚∗, (𝜎1
∗, 𝜎2

∗, 𝑠∗)) such 

that 𝑣∗ = 𝑣 corresponding to 𝑚, 𝜎1, 𝜎2, 𝑠 ∈ 𝑄

 Analysis: Since 𝑡∗ = 𝑡, t∗ = H M∗ 𝜎2
∗ , t = H M | 𝜎2), 

what we want to prove is M 𝜎2≠ 𝑀∗ 𝜎2
∗. Say 𝑀 = 𝑀∗

and 𝑔𝑟 = 𝜎2 = 𝜎2
∗. We know 𝑣∗ = 𝑣 = 𝐻 𝑔𝑡ℎ𝑠 . The fact 

that 𝑣∗ = 𝑣 implies 𝜎1 = 𝜎1
∗. If 𝑠∗ = 𝑠, then A lost. Else, A 

wins, but produces collision in 𝐻 𝑔𝑡ℎ𝑠 .



PROOF – TYPE II FORGERIES

 sEUF-CMA adversary A outputs (𝑚∗, (𝜎1
∗, 𝜎2

∗, 𝑠∗)) such 

that 𝑣∗ = 𝑣 and 𝑡∗ ≠ 𝑡

 Build adversary B that breaks Dlog

 B receives (𝑔, ℎ) from challenger, must find log𝑔 ℎ

 Setup: inject g, h into 𝑃𝐾 = (𝑔, 𝑔𝑦, 𝑔∗, ℎ, 𝑢∗, 𝑈, 𝐻), get 𝑆𝐾 =
(𝑔∗)𝑦 honestly, output 𝑃𝐾 to A

 Signature queries: signatures done honestly

 Forgery: B receives A’s forgery (𝑚∗, (𝜎1
∗, 𝜎2

∗, 𝑠∗)) such that 

𝑣∗ = 𝑣 corresponding to 𝑚, 𝜎1, 𝜎2, 𝑠 ∈ 𝑄

 Analysis: As 𝑣∗ = 𝑣 = 𝐻 𝑔𝑡ℎ𝑠 , we know 𝐻 𝑔𝑡ℎ𝑠 =𝐻 𝑔𝑡
∗
ℎ𝑠

∗
, 

in which 𝑠, 𝑠∗, 𝑡, 𝑡∗ are known. Output 𝑎 =
𝑡−𝑡∗

𝑠∗−𝑠
as DLog



PROOF – TYPE III FORGERIES

 We will not cover them here.

 Proof is more complicated, and relies on a 

transformation of EUF-CMA to sEUF-CMA


