INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

INSA -

(&:1RISA

THE POWER OF PAIRINGS TOWARDS
STANDARD MODEL SECURITY

‘ Pairings, IBE, IND-CCA-secure encryption,
authentication

FROM PREVIOUS LECTURE

Public-key Crypto
Alternative to symmetric key primitives
Do not require sharing keys, but they require a PKI

PKE
Comes 1n 2 flavours: IND-CPA and IND-CCA
Saw 1 constrution based on DDH that 1s IND-CPA
Malleability implies no IND-CCA

Signature Schemes
Security: EUF-CMA

RSA signatures are not EUF-CMA
But we could use FDH in the random oracle model

PART 1
PAIRINGS

PAIRINGS IN GENERAL

Setting :
2 additive groups G4, G,, multiplicative group Gy
All three groups of prime order g
We can write G; =< P, ...qP > and G, =< (,...,qQ >

Imagine a mapping e: G; X G, — Gy such that:
Bilinear: for all a,b € {1, ...,q — 1} it holds that:
e(aP,bQ) = e(P,Q)*
Non-degenerate: e(P,Q) # 1
Efficiently computable

PAIRINGS IN CRYPTOGRAPHY

Usually computed on elliptic curves

There are different types, depending on how the
pairing 1s constructed

Security depends on type and on something called
“embedding degree”

Mostly defined with elements from additive
subgroups (rather than multiplicative ones), but we
will keep the multiplicative notation

We will not cover specifics in this course
If you're interested, you could read:
Lawrence C. Washington:
‘Elliptic curves: Number theory and cryptography’

DDH AND PAIRINGS

Consider multiplicative group G = < g > of prime
order g, and a pairing e: G X G - G! on this group

Given (g, g“,gb,gc) DDH problem requires to decide
whether g¢ = g% or g¢ just random element
Bilinearity: e(g% g?) = e(g,9)* = e(g, g*°)

DDH adversary tests whether e(g%, g?) = e(g,g°)

If so, then guess that g¢ = g%
Else, output that g€ is random

Conclusion: DDH 1s easy to solve in groups that
admit pairings

HARD PROBLEMS WITH PAIRINGS

Setup: multiplicative group G =< g > of prime
order g, given a bilinear mapping e: G X G » G'

Computational Bilinear DH problem:
Given (g, 9% g%, g¢), compute g@°°¢
Decisional Bilinear DH problem
Given (g, 9% g%, g¢, g?), decide whether g% = g4¢

CDH and DLog:
We think these are still hard despite pairings

WHY WE USE PAIRINGS

aER {0,,q_1}

Alice Bob A, = aP: A, = aQ
Choose Choose Allce
a€pi0,..,q—1} b €r {0,..,q—1} .V,
S
(A = aP Ay, A,
B = bP .\\)CL) B1»Bz((r
’ Charli B(‘)b
Compute Compute
c€r {0,..,g—1 bey {0,..,g—-1
K = bA K — aB R { q } R { q }
C1=CP;C2=CQ C1=bP,C2=bQ
Same K:

bA = baP = abP = aB

THREE-PARTITE KEY EXCHANGE

Alice

Choose

a€p{0,..,qg—1}

Bob

Choose
bER {0, ,q—l}

A=aP
B =bP .
Compute Compute
K =DbA K = aB
Same K:

bA = baP = abP = aB

K =e(B,Cy)" =
e(bP,cQ)® = e(P,Q)%b¢
Alice
Ay, A4,
C1,C, B4, B,
Charlie Bob
K=e(A;,By) = K =e((,A;)b:
e(aP,bQ)¢ = e(P, Q)¢
e(P, Q)abc

PART 11
IDENTITY-BASED ENCRYPTION

PKE AND IBE

PKE:

Alice has a private key for decryption

Bob (and everyone else) has a public key for
encryption to Alice

Problem of certification: whose key 1s that?

IBE:

Bob has (a function of) Alice’s 1dentity (name, email
address, social security number) as a PK

Alice can derive a secret key from that

Bob encrypts with Alice’s identity, so only she can
decrypt

IBE SYNTAX

Tuple of algorithms (Setup, KGen, Enc, Dec) with:

Setup(11): on input the security parameter, this algorithm
outputs (MSK, PPar), a master secret key and
some global parameters

KGen(MSK, ID) : on input the master secret key and the
1dentity, this algorithm outputs an
1dentity-specific secret key sk;p

Enc(ID; M): on input an identity and a message, output a
ciphertext c

Dec(sk;p,c): on input the identity-specific sk;, and a cipher-
text, output plaintext m or symbol L

IBE SETUP

Why do we need a setup algorithm for IBE and
not for regular PKE?

IBE SETUP

Why do we need a setup algorithm for IBE and
not for regular PKE?

Not because we need MSK to generate our secret
keys with

After all, each user could just generate sk;p, as we
do in regular PKE, right?

IBE SETUP

Why do we need a setup algorithm for IBE and not
for regular PKE?

Not because we need MSK to generate our secret
keys with

After all, each user could just generate sk;p, as we
do in regular PKE, right?

Wrong!

We need to ensure that the parameters are chosen
well, so that there’s no clash for sk;p !

PAIRING BASED IBE

Designed by Boneh and Franklin in 2001

Ingredients:
Identity space 1D
A hash function (will see it later)
A bilinear mapping

Setup outputs:
A couple of groups G, G' of prime order g
A secret value y € {1,2, ...,q — 1}
A generator g for G, and the value g”
A hash function H: ID - G
Set MSK =y ; PPar = (G, G', g,97, H)

BONEH-FRANKLIN IBE

MSK =y ; PPar = (G,G', g, g7, H)
ID-specific secret key generation:

Takes input y, ID

Output sk;p, = HUD)Y € G
Encryption:

Takes input m,ID

Choose random r € {1, ...,q — 1}, compute g"

Output: c=(g", m- e(H(UD),g¥)")
Decryption:

Takes input ¢ = (¢4, ¢5), Skip

AN

Compute: 2/, ypy gry = ™

SECURITY OF BONEH-FRANKLIN

Theorem:

BF 1s IND-CPA in the random oracle model if the
Decisional Bilinear DH problem 1s hard in G

Translation:

In the random oracle model
If there exists an adversary that wins the IND-CPA
game against the BF scheme with probability - + p,

Then there exists an adversary B that can solve the
DBDH problem in G with probability - + ﬁp[l,
H

IND-CPA FOR IBE

IND-CPA: eavesdropper can’t tell even 1 bit of p-text
(MSK,PPar) « Setup (14)
b <4 {0,1}
(mg ,my, ID) « AKCEnCHC) (PPar, 14)
¢ < Enc(ID; my)
d « 260 (c, PPar, 1)
2 wins iff. d = b and KGen(I/D) never queried

Parameter: gz RO queries

Intuition: we will need the ROM 1in order to make sure
that the small entropy from identifiers translates to a

LOT of entropy for the secret keys

PROOF OF IND-CPA OF BF

Proof:
B’s goal is to distinguish between (g, g%, g%, g¢, g*°¢) and
(9,9%9° 9% 9%
B’s strategy will be to inject the challenge into a single

1dentity ID; then B will hope that A will output THAT
1dentity for the challenge

Constructing B:
Receives (g, 9% g, g%, g?) with z random or z = abc
Begin by running Setup, need to output Ppar to A
Insert g¥ = g%, output (G, G, g, g% H) to A
A can now make KGen and H queries
The former outputs secret keys, but not for the challenge ID
The latter allows to just hash identities (in the ROM)

PROOF OF IND-CPA OF BF

Proof (continued):

Constructing B:
Receives (g, g% g°, g%, g?) with z random or z = abc
Begin by running Setup, need to output Ppar to A
Insert g¥ = g%, output (G,GT, g, g% H) to A
A can now make KGen and H queries
B: guesses a random index: i € {1, ..., qy}
Answer to H queries (programming RO):
On j-th query, j # i, pick random rj, output H(x) = g
On i-th query, insert H(x) = g°
Answer to KGen queries:
B knows DLog of of all H(x), except for the i-th query
But A can’t query the SK for that if it’s his challenge

PROOF OF IND-CPA OF BF

Proof (continued):

Constructing B:
Receives (g, g% g°, g%, g?) with z random or z = abc
Running Setup, output (G, G, g, g% H) to A
Answer to queries:
B: guesses a random index: i € {1, ..., qy}
Answer to H queries (programming RO):
On j-th query, j # i, pick random 7j, output H(x) = g'J
On i-th query, insert H(x) = g”
Answer to KGen queries:
On j-th query, output SK;p, = (g%)"/ = H(x)%
On i-th query, abort
A’s challenge: A outputs (mgy, my,ID)
If ID was not i-th query, abort
Else: choose random b*, output (g€, M+ - e(g, 9%))

PROOF OF IND-CPA OF BF

Proof (continued):
Receives (g, g% g°, g%, g?) with z random or z = abc
Running Setup, output (G, G, g, g% H) to A
Answer to queries:
B: guesses a random index: i € {1, ..., qy}
Answer to H queries (programming RO):
On j-th query, j # i, pick random rj, output H(x) = g"/
On i-th query, insert H(x) = g°
Answer to KGen queries:
On j-th query: SK;p = (g%)"/ = H(x)%; if j = i, abort
A’s challenge: A outputs (my, m4,ID)
If ID was not i-th query, abort and guess if z = abc or not
Else: choose random b*, output (g€, My - e(g, g%))
A’s response: guess d* of b*
B guesses z = abc iff. d* = b*

PROOF OF IND-CPA OF BF

Proof (cont):
Analysis:

B chooses the wrong i implies B had to guess (B wins w.p. %)

Happens w.p. 1 — L

dH

B chooses the right i 1implies:
If z = abc simulation of game is perfect; A wins w.p. % + vy
If z 1s random, c is statistically independent from my, m,
: 1
A wins w.p. >

B wins w.p.: iIPD[B wins | B guesses right] + (1 — i) % =

dH qdH

1 /1/1 1 1 1 1 1 1
a(z(zﬂ%)+5'5)+(1—a)'5—5+am

PART 11
THE USES OF IBE

FUJISAKI-OKAMOTO

Designed a “compiler”:
Input: a PKE scheme that’s IND-CPA secure
Output: a PKE scheme that’s IND-CCA secure

Boneh and Franklin used it on their IND-CPA
scheme, and obtained an IND-CCA one

We won’t look at the generic compiler, but let’s see the
IND-CCA version of BF!
For interested readers, see:

Fujisaki, Okamoto “Secure integration of asymmetric
and symmetric encryption schemes”, Crypto 99

CCA-SECURE IBE

Setup outputs:
A couple of groups G, G of prime order g
A secret value y € {1,2, ...,q — 1}
A generator g for G, and the value g”
Hash functions: H: ID -» G, F:{0,1}9 x {0,1}9 —» Z,,
G:{0,1}* - {0,1}4
Set MSK =y ; PPar = (G,G',g,9”,F,G,H)

ID-specific secret key generation:
Takes input y, ID
Output sk;p, = HUID)Y € G

IND-CCA VERSION OF BF

Setup: MSK =y ; PPar = (G, G, g,9”,F,G,H)
Key generation: sk;p, = H(ID)Y € G
Encryption:

Takes input m,ID

Choose random s € {0,1}9, compute r = F(s,m)

Output: c=(g", s-e(H(UD),g”)", m-G(s))
Decryption:

Takes input ¢ = (¢, ¢y, c3), sk;p = H(UID)Y
Compute: 2/, ypyy gsy = 3

SECURITY STATEMENT

Theorem:
In the Random Oracle Model (F, G, H all ROs)

If the DBDH assumption holds in group G, then the
modified Boneh-Franklin scheme 1s IND-CCA secure

We will not prove this here

Intuition: ¢, hides s like it hid m before, and we use s
to hide m 1n c3. We use F to cryptographically bind r
to s, but since F 1s a random oracle any change in s
creates a random F output.

SIGNATURES IN THE STANDARD MODEL

So far we've seen:

IND-CPA-secure encryption in the standard model
(no ROs required) — El1Gamal

IND-CPA-secure IBE in the ROM — Boneh-Franklin
IND-CCA-secure IBE in the ROM — BF + FO

EUF-CMA signatures in the ROM using Full-domain
hashing (FDH)

Let’s see now:

(strongly) EUF-CMA signatures without random
oracles, using pairings

STRONG UNFORGEABILITY

EUF-CMA: adversary can’t forge fresh signature
(sk,pk) < KGen (1%)
(m,0) « A8 (pk, 1)
Store list Q = {(my, g7), ... (my, g3,)} of queries to Sign

2 wins iff. (m, *) € Q and Vf(pk;m,0) =1

sEUF-CMA: adversary can’t forge fresh signature
(sk,pk) < KGen (1%)
(m,0) « &) (pk, 1%)
Store list Q = {(m, g¢), ... (my, 73,)} of queries to Sign

o wins iff. (m, o) ¢ Q and Vf(pk;m,0) =1

STRONG UNFORGEABILITY: BSW

Boneh, Shen, Waters

Ingredients:

Group G of prime order g such that e: G X G » G, with
G=<g>
Hash function H:{0,1}* — {0,1}" such that g > 2"

Key generation KGen:
Choose secret y € {1, ...,q — 1}, compute g”
Choose public g*, h € G, and random u*, uy, ...,u, € G
Set U = {uy, ..., u,} and pick H
Output: PK = (g,9% g*,h,u*,U,H) and SK = (g*)”

STRONG UNFORGEABILITY: BSW

KGen outputs PK = (g,9”,9",h,u*,U,H) and SK = (g*)”

Signing message m:
Pick random r.s € Z; ; Set 0, = g" € G
Set t « H(m || 0;) € {0,1}"; interpret t as element of Z,
Do v « H(gth%) € {0,1}"; write v = v ...v,, with v; € {0,1}
Compute: o; = (g*)” (u* [T, u;")", output (o3, 05, 5)

Verification of signature (o4, g5, 5) for message m:
Compute t = H(m || 0,), encode it as element of Ly

Do ¥ « H(gfhs) € {0,1}"; write v = vy ...v,,, with v; €
{0,1}
Verify: e(a,g) = e(Gz,u* | J uf‘) -e(g”,9")

STRONG UNFORGEABILITY OF BSW

Theorem:
Given the hash function H 1s collision resistant

Given the CDH is hard to solve in group G
Then the BSW scheme 1s strongly EUF-CMA

Proof:

Goal of sEUF-CMA attacker: output tuple (m*, (o4, 05,5))
such that (m*, (gy,05,5)) € Q

Divide forgeries in 3 types:
oTypel:v* =vandt* =t (reduce to CR of H)
oTypell: v* =vandt*#t (reduceto DLog)
o Type III: v* #v (reduce to CDH)

PROOF — TYPE I FORGERIES

sEUF-CMA adversary A outputs (m*, (a;,0,,s")) such that

v =vandt* =t

Build adversary B that breaks collision resistance of H
Setup: B simply runs setup honestly, and picks H. Output
PK = (9,9”,9*,h,u*,U,H) and SK = (g*)”
Signatures: B signs messages honestly
Challenge: B receives A’s forgery (m*, (a;,0,,s™)) such
that v* = v corresponding to (m, (61,0,5)) € Q
Analysis: Since t* =t, t* = H(M* || 05), t=HM|| g,),
what we want to proveis M || o, # M* | | 0,. Say M = M*
and g" = g, = g5. We know v* = v = H(g*h®). The fact
that v* = v implies 0; = g;. If s* = s, then A lost. Else, A
wins, but produces collision in H(gth%).

PROOF — TYPE 1I FORGERIES

sEUF-CMA adversary A outputs (m*, (a;,0,,s")) such
that v =vandt* #t
Build adversary B that breaks Dlog
B receives (g, h) from challenger, must find log, h
Setup: inject (g, h) into PK = (g,9”,9",h,u*,U,H), get SK =
(g*)? honestly, output PK to A
Signature queries: signatures done honestly
Forgery: B receives A’s forgery (m*, (o7, 05,s")) such that
v* = v corresponding to (m, (04, 02,5)) €Q
Analysis: As v* = v = H(g*h®), we know H(g*h%)=H(g" hS"),

t—t
s*—

: as DLog

in which s,s*,t,t* are known. Output a =

PROOF — TYPE 111 FORGERIES

We will not cover them here.

Proof 1s more complicated, and relies on a
transformation of EUF-CMA to sEUF-CMA

