
THE POWER OF PAIRINGS TOWARDS

STANDARD MODEL SECURITY

Pairings, IBE, IND-CCA-secure encryption, 

authentication



FROM PREVIOUS LECTURE

 Public-key Crypto

 Alternative to symmetric key primitives

 Do not require sharing keys, but they require a PKI

 PKE

 Comes in 2 flavours: IND-CPA and IND-CCA

 Saw 1 constrution based on DDH that is IND-CPA

 Malleability implies no IND-CCA

 Signature Schemes

 Security: EUF-CMA

 RSA signatures are not EUF-CMA

 But we could use FDH in the random oracle model



PART I

PAIRINGS



PAIRINGS IN GENERAL

 Setting : 

 2 additive groups 𝐺1, 𝐺2, multiplicative group 𝐺𝑇

 All three groups of prime order 𝑞

 We can write 𝐺1 =< 𝑃,…q𝑃 > and 𝐺2 =< 𝑄,… , q𝑄 >

 Imagine a mapping 𝑒: 𝐺1 × 𝐺2 → 𝐺𝑇 such that:

 Bilinear: for all a, b ∈ {1,… , 𝑞 − 1} it holds that:

𝑒 a𝑃, b𝑄 = 𝑒(𝑃, 𝑄)𝑎𝑏

 Non-degenerate: 𝑒(𝑃, 𝑄) ≠ 1

 Efficiently computable



PAIRINGS IN CRYPTOGRAPHY

 Usually computed on elliptic curves

 There are different types, depending on how the 

pairing is constructed

 Security depends on type and on something called 

“embedding degree”

 Mostly defined with elements from additive 

subgroups (rather than multiplicative ones), but we 

will keep the multiplicative notation

 We will not cover specifics in this course

 If you’re interested, you could read: 

Lawrence C. Washington: 

‘Elliptic curves: Number theory and cryptography’



DDH AND PAIRINGS

 Consider multiplicative group 𝔾 =< 𝑔 > of prime 

order 𝑞, and a pairing 𝑒: 𝔾 × 𝔾 → 𝔾𝑇 on this group

 Given 𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐 DDH problem requires to decide 

whether 𝑔𝑐 = 𝑔𝑎𝑏 or 𝑔𝑐 just random element

 Bilinearity: 𝑒 𝑔𝑎 , 𝑔𝑏 = 𝑒(𝑔, 𝑔)𝑎𝑏 = 𝑒(𝑔, 𝑔𝑎𝑏)

 DDH adversary tests whether 𝑒 𝑔𝑎 , 𝑔𝑏 = 𝑒(𝑔, 𝑔𝑐)

 If so, then guess that 𝑔𝑐 = 𝑔𝑎𝑏

 Else, output that 𝑔c is random

 Conclusion: DDH is easy to solve in groups that 

admit pairings



HARD PROBLEMS WITH PAIRINGS

 Setup: multiplicative group 𝔾 =< 𝑔 > of prime 

order 𝑞, given a bilinear mapping 𝑒: 𝔾 × 𝔾 → 𝔾𝑇

 Computational Bilinear DH problem:

 Given (𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐), compute 𝑔𝑎𝑏𝑐

 Decisional Bilinear DH problem

 Given (𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐 , 𝑔𝑧), decide whether 𝑔𝑧 = 𝑔𝑎𝑏𝑐

 CDH and DLog:

 We think these are still hard despite pairings



WHY WE USE PAIRINGS

Alice Bob

Choose

b ∈𝑅 {0, … , 𝑞 − 1}

𝐴 = a𝑃

Choose

a ∈𝑅 {0, … , 𝑞 − 1}

𝐵 = b𝑃

Compute

𝐾 = a𝐵

Compute

𝐾 = b𝐴

Same 𝐾: 

b𝐴 = ba𝑃 = ab𝑃 = a𝐵

Alice

BobCharlie

a ∈𝑅 {0, … , 𝑞 − 1}

𝐴1 = 𝑎𝑃; 𝐴2 = 𝑎𝑄

c ∈𝑅 {0, … , 𝑞 − 1}

𝐶1 = 𝑐𝑃; 𝐶2 = 𝑐𝑄

b ∈𝑅 {0, … , 𝑞 − 1}

𝐶1 = 𝑏𝑃; 𝐶2 = 𝑏𝑄

𝑨𝟏, 𝑨𝟐

𝑪𝟏, 𝑪𝟐 𝑩𝟏, 𝑩𝟐



THREE-PARTITE KEY EXCHANGE

Alice Bob

Choose

b ∈𝑅 {0, … , 𝑞 − 1}

𝐴 = a𝑃

Choose

a ∈𝑅 {0, … , 𝑞 − 1}

𝐵 = b𝑃

Compute

𝐾 = a𝐵

Compute

𝐾 = b𝐴

Same 𝐾: 

b𝐴 = ba𝑃 = ab𝑃 = a𝐵

Alice

BobCharlie

𝐾 = 𝑒( 𝐵1, 𝐶2 )
𝑎 =

𝑒(𝑏𝑃, 𝑐𝑄)𝑎 = 𝑒(𝑃, 𝑄)𝑎𝑏𝑐

𝑨𝟏, 𝑨𝟐

𝑪𝟏, 𝑪𝟐 𝑩𝟏, 𝑩𝟐

𝐾 = 𝑒( 𝐴1, 𝐵2 )
𝑐 =

𝑒(𝑎𝑃, 𝑏𝑄)𝑐 =
𝑒(𝑃, 𝑄)𝑎𝑏𝑐

𝐾 = 𝑒( 𝐶1, 𝐴2 )
𝑏=

𝑒(𝑃, 𝑄)𝑎𝑏𝑐



PART II

IDENTITY-BASED ENCRYPTION



PKE AND IBE

 PKE:

 Alice has a private key for decryption

 Bob (and everyone else) has a public key for 

encryption to Alice

 Problem of certification: whose key is that?

 IBE:

 Bob has (a function of) Alice’s  identity (name, email 

address, social security number) as a PK

 Alice can derive a secret key from that

 Bob encrypts with Alice’s identity, so only she can 

decrypt



IBE SYNTAX

 Tuple of algorithms (Setup, KGen, Enc, Dec) with:

 Setup(1𝜆): on input the security parameter, this algorithm

outputs (𝑀𝑆𝐾, 𝑃𝑃𝑎𝑟), a master secret key and

some global parameters

 KGen(𝑀𝑆𝐾, 𝐼𝐷) : on input the master secret key and the 

identity, this algorithm outputs an 

identity-specific secret key 𝑠𝑘𝐼𝐷

 Enc(𝐼𝐷;𝑀): on input an identity and a message, output a 

ciphertext 𝑐

 𝐷𝑒𝑐(𝑠𝑘𝐼𝐷, 𝑐): on input the identity-specific 𝑠𝑘𝐼𝐷 and a cipher-

text, output plaintext ෝ𝑚 or symbol ⊥



IBE SETUP

 Why do we need a setup algorithm for IBE and 

not for regular PKE?



IBE SETUP

 Why do we need a setup algorithm for IBE and 

not for regular PKE?

 Not because we need 𝑀𝑆𝐾 to generate our secret 

keys with

 After all, each user could just generate 𝑠𝑘𝐼𝐷 as we 

do in regular PKE, right?



IBE SETUP

 Why do we need a setup algorithm for IBE and not 

for regular PKE?

 Not because we need 𝑀𝑆𝐾 to generate our secret 

keys with

 After all, each user could just generate 𝑠𝑘𝐼𝐷 as we 

do in regular PKE, right?

 Wrong!

 We need to ensure that the parameters are chosen 

well, so that there’s no clash for 𝑠𝑘𝐼𝐷 !



PAIRING BASED IBE

 Designed by Boneh and Franklin in 2001

 Ingredients:

 Identity space 𝕀𝔻

 A hash function (will see it later)

 A bilinear mapping

 Setup outputs:

 A couple of groups 𝔾,𝔾𝑇 of prime order 𝑞

 A secret value 𝑦 ∈ {1, 2, … , 𝑞 − 1}

 A generator 𝑔 for 𝔾, and the value 𝑔𝑦

 A hash function 𝐻: 𝕀𝔻 → 𝔾

 Set 𝑀𝑆𝐾 = 𝑦 ; 𝑃𝑃𝑎𝑟 = (𝔾,𝔾𝑇 , 𝑔, 𝑔𝑦 , 𝐻)



BONEH-FRANKLIN IBE

 𝑀𝑆𝐾 = 𝑦 ; 𝑃𝑃𝑎𝑟 = (𝔾,𝔾𝑇 , 𝑔, 𝑔𝑦 , 𝐻)

 ID-specific secret key generation:

 Takes input 𝑦, 𝐼𝐷

 Output 𝑠𝑘𝐼𝐷 = 𝐻 𝐼𝐷 𝑦 ∈ 𝔾

 Encryption:

 Takes input 𝑚, 𝐼𝐷

 Choose random 𝑟 ∈ {1,… , 𝑞 − 1}, compute 𝑔𝑟

 Output: 𝑐 = ( 𝑔𝑟 , 𝑚 ⋅ 𝑒 𝐻 𝐼𝐷 , 𝑔𝑦 𝑟 )

 Decryption:

 Takes input 𝑐 = (𝑐1, 𝑐2), 𝑠𝑘𝐼𝐷

 Compute: ൗ
𝑐2

𝑒(𝐻 𝐼𝐷 𝑦,𝑔𝑟) = ෝ𝑚



SECURITY OF BONEH-FRANKLIN

 Theorem:

 BF is IND-CPA in the random oracle model if the 

Decisional Bilinear DH problem is hard in 𝔾

 Translation:

 In the random oracle model

 If there exists an adversary that wins the IND-CPA 

game against the BF scheme with probability 
1

2
+ 𝑝𝐴

 Then there exists an adversary B that can solve the 

DBDH problem in 𝔾 with probability 
1

2
+

1

2 𝑞𝐻
𝑝𝐴, 



IND-CPA FOR IBE

 IND-CPA: eavesdropper can’t tell even 1 bit of p-text

𝑀𝑆𝐾, 𝑃𝑃𝑎𝑟 ← Setup (1𝜆)

𝑏 ←$ 0,1

𝑚0 , 𝑚1, 𝐼𝐷 ←A𝐾𝐺𝑒𝑛 ⋅ ,𝐻(⋅) (𝑃𝑃𝑎𝑟, 1𝜆)

𝑐 ← Enc(𝐼𝐷;𝑚𝑏)

𝑑 ←A𝐾𝐺𝑒𝑛(⋅)(𝑐, 𝑃𝑃𝑎𝑟, 1𝜆)

A wins iff. 𝑑 = 𝑏 and KGen(𝐼𝐷) never queried

Parameter: 𝑞𝐻 RO queries

 Intuition: we will need the ROM in order to make sure 

that the small entropy from identifiers translates to a 

LOT of entropy for the secret keys



PROOF OF IND-CPA OF BF

 Proof:

 B’s goal is to distinguish between (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐 , 𝑔𝑎𝑏𝑐) and 

(𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐 , 𝑔𝑧)

 B’s strategy will be to inject the challenge into a single 

identity 𝐼𝐷; then B will hope that A will output THAT 

identity for the challenge

 Constructing B:

 Receives (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑧) with 𝑧 random or 𝑧 = 𝑎𝑏𝑐

 Begin by running Setup, need to output 𝑃𝑝𝑎𝑟 to A

 Insert 𝑔𝑦 = 𝑔𝑎, output 𝔾,𝔾𝑇 , 𝑔, 𝑔𝑎 , 𝐻 to A

 A can now make 𝐾𝐺𝑒𝑛 and 𝐻 queries

 The former outputs secret keys, but not for the challenge ID

 The latter allows to just hash identities (in the ROM)



PROOF OF IND-CPA OF BF

 Proof (continued):

 Constructing B:

 Receives (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑧) with 𝑧 random or 𝑧 = 𝑎𝑏𝑐

 Begin by running Setup, need to output 𝑃𝑝𝑎𝑟 to A

 Insert 𝑔𝑦 = 𝑔𝑎, output 𝔾,𝔾𝑇 , 𝑔, 𝑔𝑎 , 𝐻 to A

 A can now make 𝐾𝐺𝑒𝑛 and 𝐻 queries

 B: guesses a random index: 𝑖 ∈ {1, … , 𝑞𝐻}

 Answer to H queries (programming RO):

On 𝑗-th query, 𝑗 ≠ 𝑖, pick random 𝑟𝑗, output 𝐻 𝑥 = 𝑔𝑣

On 𝑖-th query, insert 𝐻 𝑥 = 𝑔𝑏

 Answer to KGen queries:

B knows DLog of of all 𝐻(𝑥), except for the 𝑖-th query

But A can’t query the 𝑆𝐾 for that if it’s his challenge 



PROOF OF IND-CPA OF BF

 Proof (continued):

 Constructing B:

 Receives (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑧) with 𝑧 random or 𝑧 = 𝑎𝑏𝑐

 Running Setup, output 𝔾,𝔾𝑇 , 𝑔, 𝑔𝑎 , 𝐻 to A

 Answer to queries:

 B: guesses a random index: 𝑖 ∈ {1, … , 𝑞𝐻}

 Answer to H queries (programming RO):

On 𝑗-th query, 𝑗 ≠ 𝑖, pick random 𝑟𝑗, output 𝐻 𝑥 = 𝑔𝑟𝑗

On 𝑖-th query, insert 𝐻 𝑥 = 𝑔𝑏

 Answer to KGen queries:

On 𝑗-th query, output 𝑆𝐾𝐼𝐷 = (𝑔𝑎)𝑟𝑗 = 𝐻 𝑥 𝑎

On 𝑖-th query, abort

 A’s challenge: A outputs (𝑚0, 𝑚1, 𝐼𝐷)

 If 𝐼𝐷 was not 𝑖-th query, abort

 Else: choose random 𝑏∗, output (𝑔𝑐, 𝑀𝑏∗ ⋅ 𝑒(𝑔, 𝑔
𝑧))



PROOF OF IND-CPA OF BF

 Proof (continued):
 Receives (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑧) with 𝑧 random or 𝑧 = 𝑎𝑏𝑐

 Running Setup, output 𝔾,𝔾𝑇 , 𝑔, 𝑔𝑎 , 𝐻 to A

 Answer to queries:

 B: guesses a random index: 𝑖 ∈ {1, … , 𝑞𝐻}

 Answer to H queries (programming RO):

On 𝑗-th query, 𝑗 ≠ 𝑖, pick random 𝑟𝑗, output 𝐻 𝑥 = 𝑔𝑟𝑗

On 𝑖-th query, insert 𝐻 𝑥 = 𝑔𝑏

 Answer to KGen queries:

On 𝑗-th query: 𝑆𝐾𝐼𝐷 = (𝑔𝑎)𝑟𝑗 = 𝐻 𝑥 𝑎; if 𝑗 = 𝑖, abort

 A’s challenge: A outputs (𝑚0, 𝑚1, 𝐼𝐷)

 If 𝐼𝐷 was not 𝑖-th query, abort and guess if 𝑧 = 𝑎𝑏𝑐 or not

 Else: choose random 𝑏∗, output (𝑔𝑐, 𝑀𝑏∗ ⋅ 𝑒(𝑔, 𝑔
𝑧))

 A’s response: guess 𝑑∗ of 𝑏∗

 B guesses 𝑧 = 𝑎𝑏𝑐 iff. 𝑑∗ = 𝑏∗



PROOF OF IND-CPA OF BF

 Proof (cont):

 Analysis:

 B chooses the wrong 𝑖 implies B had to guess (B wins w.p. 
1

2
)

Happens w.p. 1 −
1

𝑞𝐻

 B chooses the right 𝑖 implies:

If 𝑧 = 𝑎𝑏𝑐 simulation of game is perfect; A wins w.p. 
1

2
+ 𝑝𝐴

If 𝑧 is random, 𝑐 is statistically independent from 𝑚0, 𝑚1

A wins w.p. 
1

2

 B wins w.p.: 
1

𝑞𝐻
ℙ 𝐵 wins 𝐵 guesses right] + 1 −

1

𝑞𝐻
⋅
1

2
=

1

𝑞𝐻

1

2

1

2
+ 𝑝𝐴 +

1

2
⋅
1

2
+ 1 −

1

𝑞𝐻
⋅
1

2
=

1

2
+

1

2𝑞𝐻
𝑝𝐴



PART II

THE USES OF IBE



FUJISAKI-OKAMOTO

 Designed a “compiler”:

 Input: a PKE scheme that’s IND-CPA secure

 Output: a PKE scheme that’s IND-CCA secure

 Boneh and Franklin used it on their IND-CPA 
scheme, and obtained an IND-CCA one

 We won’t look at the generic compiler, but let’s see the 
IND-CCA version of BF!

 For interested readers, see:

Fujisaki, Okamoto “Secure integration of asymmetric 
and symmetric encryption schemes”, Crypto 99



CCA-SECURE IBE

 Setup outputs:

 A couple of groups 𝔾,𝔾𝑇 of prime order 𝑞

 A secret value 𝑦 ∈ {1, 2, … , 𝑞 − 1}

 A generator 𝑔 for 𝔾, and the value 𝑔𝑦

 Hash functions: 𝐻: 𝕀𝔻 → 𝔾, 𝐹: 0,1 𝑞 × 0,1 𝑞 → ℤ𝑞
∗ , 

𝐺: 0,1 𝜆 → 0,1 𝜆

 Set 𝑀𝑆𝐾 = 𝑦 ; 𝑃𝑃𝑎𝑟 = (𝔾,𝔾𝑇 , 𝑔, 𝑔𝑦 , 𝐹, 𝐺, 𝐻)

 ID-specific secret key generation:

 Takes input 𝑦, 𝐼𝐷

 Output 𝑠𝑘𝐼𝐷 = 𝐻 𝐼𝐷 𝑦 ∈ 𝔾



IND-CCA VERSION OF BF

 Setup: 𝑀𝑆𝐾 = 𝑦 ; 𝑃𝑃𝑎𝑟 = (𝔾,𝔾𝑇 , 𝑔, 𝑔𝑦 , 𝐹, 𝐺, 𝐻)

 Key generation: 𝑠𝑘𝐼𝐷 = 𝐻 𝐼𝐷 𝑦 ∈ 𝔾

 Encryption:

 Takes input 𝑚, 𝐼𝐷

 Choose random 𝑠 ∈ 0,1 𝑞, compute 𝑟 = 𝐹(𝑠,𝑚)

 Output: 𝑐 = ( 𝑔𝑟 , 𝑠 ⋅ 𝑒 𝐻 𝐼𝐷 , 𝑔𝑦 𝑟 , 𝑚 ⋅ 𝐺(𝑠) )

 Decryption:

 Takes input 𝑐 = 𝑐1, 𝑐2, 𝑐3 , 𝑠𝑘𝐼𝐷 = 𝐻 𝐼𝐷 𝑦

 Compute: ൗ
𝑐2

𝑒(𝐻 𝐼𝐷 𝑦,𝑔𝑠) = Ƹ𝑠

 Finally get ෝ𝑚 = ൗ
𝑐3

𝐺( Ƹ𝑠)



SECURITY STATEMENT

 Theorem:

 In the Random Oracle Model (𝐹, 𝐺,𝐻 all ROs)

 If the DBDH assumption holds in group 𝔾, then the 

modified Boneh-Franklin scheme is IND-CCA secure

 We will not prove this here

 Intuition: 𝑐2 hides 𝑠 like it hid 𝑚 before, and we use 𝑠
to hide 𝑚 in 𝑐3. We use 𝐹 to cryptographically bind 𝑟
to 𝑠, but since 𝐹 is a random oracle any change in 𝑠
creates a random 𝐹 output.



SIGNATURES IN THE STANDARD MODEL

 So far we’ve seen:

 IND-CPA-secure encryption in the standard model 

(no ROs required) – ElGamal

 IND-CPA-secure IBE in the ROM – Boneh-Franklin

 IND-CCA-secure IBE in the ROM – BF + FO 

 EUF-CMA signatures in the ROM using Full-domain 

hashing (FDH)

 Let’s see now:

 (strongly) EUF-CMA signatures without random 

oracles, using pairings



STRONG UNFORGEABILITY

 EUF-CMA: adversary can’t forge fresh signature

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑚 , 𝜎 ←ASign(∗) (𝑝𝑘, 1𝜆)

Store list ℚ = { 𝑚1, 𝜎1 , … (𝑚𝑘 , 𝜎𝑘)} of queries to Sign

A wins iff. 𝑚, ∗ ∉ ℚ and Vf 𝑝𝑘;𝑚, 𝜎 = 1

 sEUF-CMA: adversary can’t forge fresh signature

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑚 , 𝜎 ←ASign(∗) (𝑝𝑘, 1𝜆)

Store list ℚ = { 𝑚1, 𝜎1 , … (𝑚𝑘 , 𝜎𝑘)} of queries to Sign

A wins iff. 𝑚, 𝜎 ∉ ℚ and Vf 𝑝𝑘;𝑚, 𝜎 = 1



STRONG UNFORGEABILITY: BSW

 Boneh, Shen, Waters

 Ingredients: 

 Group 𝔾 of prime order 𝑞 such that 𝑒:𝔾 × 𝔾 → 𝔾𝑇, with 

𝔾 = < 𝑔 >

 Hash function 𝐻: 0,1 ∗ → 0,1 𝑛 such that 𝑞 > 2𝑛

 Key generation 𝐾𝐺𝑒𝑛:

 Choose secret 𝑦 ∈ {1,… , 𝑞 − 1}, compute 𝑔𝑦

 Choose public 𝑔∗, ℎ ∈ 𝔾, and random 𝑢∗, 𝑢1, … , 𝑢𝑛 ∈ 𝔾

 Set 𝑈 = {𝑢1, … , 𝑢𝑛} and pick 𝐻

 Output: 𝑃𝐾 = (𝑔, 𝑔𝑎 , 𝑔∗, ℎ, 𝑢∗, 𝑈, 𝐻) and 𝑆𝐾 = (𝑔∗)𝑦



STRONG UNFORGEABILITY: BSW

 𝐾𝐺𝑒𝑛 outputs 𝑃𝐾 = (𝑔, 𝑔𝑦, 𝑔∗, ℎ, 𝑢∗, 𝑈, 𝐻) and 𝑆𝐾 = (𝑔∗)𝑦

 Signing message 𝑚:

 Pick random 𝑟. 𝑠 ∈ ℤ𝑞 ; Set 𝜎2 = 𝑔𝑟 ∈ 𝔾

 Set 𝑡 ← 𝐻 𝑚 𝜎2 ∈ 0,1 𝑛; interpret 𝑡 as element of ℤ𝑞
 Do 𝑣 ← 𝐻 𝑔𝑡ℎ𝑠 ∈ 0,1 𝑛; write 𝑣 = 𝑣1…𝑣𝑛, with 𝑣𝑖 ∈ {0,1}

 Compute: 𝜎1 = (𝑔∗)𝑦(𝑢∗ ς𝑖=1
𝑛 𝑢𝑖

𝑣𝑖)𝑟, output (𝜎1, 𝜎2, 𝑠)

 Verification of signature (𝜎1, 𝜎2, 𝑠) for message 𝑚:

 Compute Ƹ𝑡 = 𝐻 𝑚 𝜎2 , encode it as element of ℤ𝑞

 Do ො𝑣 ← 𝐻 𝑔
෠𝑡ℎ𝑠 ∈ 0,1 𝑛; write 𝑣 = 𝑣1…𝑣𝑛, with 𝑣𝑖 ∈

{0,1}

 Verify: 𝑒 𝜎1, 𝑔 = 𝑒 𝜎2, 𝑢
∗ ς𝑖=1

𝑛 𝑢𝑖
𝑣𝑖 ⋅ 𝑒(𝑔𝑦 , 𝑔∗)



STRONG UNFORGEABILITY OF BSW

 Theorem:

 Given the hash function 𝐻 is collision resistant

 Given the CDH is hard to solve in group 𝔾

 Then the BSW scheme is strongly EUF-CMA

 Proof: 

 Goal of sEUF-CMA attacker: output tuple (𝑚∗, (𝜎1, 𝜎2, 𝑠))

such that 𝑚∗, 𝜎1, 𝜎2, 𝑠 ∉ 𝑄

 Divide forgeries in 3 types:

 Type I: 𝑣∗ = 𝑣 and 𝑡∗ = 𝑡 (reduce to CR of H)

 Type II: 𝑣∗ = 𝑣 and 𝑡∗ ≠ 𝑡 (reduce to DLog)

 Type III: 𝑣∗ ≠ 𝑣 (reduce to CDH)



PROOF – TYPE I FORGERIES

 sEUF-CMA adversary A outputs (𝑚∗, (𝜎1
∗, 𝜎2

∗, 𝑠∗)) such that 

𝑣∗ = 𝑣 and 𝑡∗ = 𝑡

 Build adversary B that breaks collision resistance of 𝐻

 Setup: B simply runs setup honestly, and picks 𝐻. Output 

𝑃𝐾 = (𝑔, 𝑔𝑦, 𝑔∗, ℎ, 𝑢∗, 𝑈, 𝐻) and 𝑆𝐾 = (𝑔∗)𝑦

 Signatures: B signs messages honestly

 Challenge: B receives A’s forgery (𝑚∗, (𝜎1
∗, 𝜎2

∗, 𝑠∗)) such 

that 𝑣∗ = 𝑣 corresponding to 𝑚, 𝜎1, 𝜎2, 𝑠 ∈ 𝑄

 Analysis: Since 𝑡∗ = 𝑡, t∗ = H M∗ 𝜎2
∗ , t = H M | 𝜎2), 

what we want to prove is M 𝜎2≠ 𝑀∗ 𝜎2
∗. Say 𝑀 = 𝑀∗

and 𝑔𝑟 = 𝜎2 = 𝜎2
∗. We know 𝑣∗ = 𝑣 = 𝐻 𝑔𝑡ℎ𝑠 . The fact 

that 𝑣∗ = 𝑣 implies 𝜎1 = 𝜎1
∗. If 𝑠∗ = 𝑠, then A lost. Else, A 

wins, but produces collision in 𝐻 𝑔𝑡ℎ𝑠 .



PROOF – TYPE II FORGERIES

 sEUF-CMA adversary A outputs (𝑚∗, (𝜎1
∗, 𝜎2

∗, 𝑠∗)) such 

that 𝑣∗ = 𝑣 and 𝑡∗ ≠ 𝑡

 Build adversary B that breaks Dlog

 B receives (𝑔, ℎ) from challenger, must find log𝑔 ℎ

 Setup: inject g, h into 𝑃𝐾 = (𝑔, 𝑔𝑦, 𝑔∗, ℎ, 𝑢∗, 𝑈, 𝐻), get 𝑆𝐾 =
(𝑔∗)𝑦 honestly, output 𝑃𝐾 to A

 Signature queries: signatures done honestly

 Forgery: B receives A’s forgery (𝑚∗, (𝜎1
∗, 𝜎2

∗, 𝑠∗)) such that 

𝑣∗ = 𝑣 corresponding to 𝑚, 𝜎1, 𝜎2, 𝑠 ∈ 𝑄

 Analysis: As 𝑣∗ = 𝑣 = 𝐻 𝑔𝑡ℎ𝑠 , we know 𝐻 𝑔𝑡ℎ𝑠 =𝐻 𝑔𝑡
∗
ℎ𝑠

∗
, 

in which 𝑠, 𝑠∗, 𝑡, 𝑡∗ are known. Output 𝑎 =
𝑡−𝑡∗

𝑠∗−𝑠
as DLog



PROOF – TYPE III FORGERIES

 We will not cover them here.

 Proof is more complicated, and relies on a 

transformation of EUF-CMA to sEUF-CMA


