

PUBLIC KEY CRYPTOGRAPHY: ENCRYPTION, SIGNATURES, FDH

The ROM, FDH, using the ROM

FROM PREVIOUS LECTURE

- > Ciphers
 - Stream ciphers: many follow OTP + PRG strategy
 - Block ciphers: work on plaintext of limited size = block output ciphertexts of same size
 - Modes of operation : used to encrypt longer messages

Hash functions

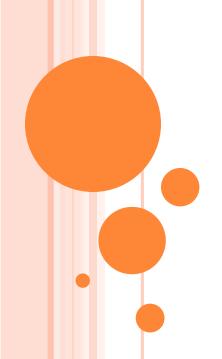
- Basic properties : first/second preimage resistance, collision resistance
- Can be used to construct primitives like HMacs

IN THIS COURSE

- Perfect hash functions:
 - The Random Oracle Model

- Public-key cryptography:
 - Number-theoretical assumptions in PKC
 - Public-key encryption
 - Signature schemes
 - Full-domain hashes

PART I BACKGROUND



DIVISORS, PRIMES, GCD

- \triangleright Assume: positive integers $a, b \in \mathbb{N}$
- ▶ Division: "a divides b" iff. $\exists k \in \mathbb{N} \text{ s.t. } a = k \cdot b$
 - We write $a \mid b$ and say a is a divisor of b
- Examples: 2 | 24, 11 | 121, etc.
- Prime numbers: positive integers greater than 1 only divisible by 1 and themselves
 - 1 is not a prime number. Nor is 0.
- > Modular arithmetic: remainder of division
 - $a \mod b = r \text{ s.t. } \exists k \in \mathbb{Z} \text{ with } a = kb + r \text{ and } r \in \mathbb{N}$
 - E.g. $15 \mod 2 = 1$; $235 \mod 5 = 0$; $135 \mod 11 = 3$

EQUIVALENCE CLASSES, GCD

- > Equivalence mod *n*:
 - $a \cong_n b$ iff. $a \mod n = b \mod n$
- \triangleright Equivalence classes a_n :
 - $a_n = \{b \in \mathbb{Z} \mid a \cong_n b\}$
 - For instance $3_{12} = \{... 9, 3, 15, 27, ...\}$
- > Common divisor: *d* is common divisor of *a*, *b* iff.:
 - $d \mid a$ and $d \mid b$
- Greatest common divisor: largest such d
 - GCD(15,35) = 5
 - GCD(52, 236) = 4

FINDING GCD

- ightharpoonup If $a \ge b$, it holds that: $GCD(a, b) = GCD(b, a \mod b)$
 - This is because if $d \mid a$ and $d \mid b$, then $d \mid (a \mod b)$
 - Why? Write a = bq + r, a = kd, b = sdThen kd = qsd + r, so d(k - qs) = r and $d \mid r$
- For any $a \ge b$: if $a \mod b = 0$ then GCD(a, b) = b
- \triangleright Hence Euclid's algorithm, input $a \ge b$:
 - 1. if $a \mod b = 0$, then output b
 - 2. else, repeat procedure on input (*b*, *a* mod *b*)
- \triangleright Total complexity: $O(\log^2 a)$

EXTENDED GCD

- > Theorem:
 - If d = GCD(a, b), then d is the smallest positive integer for which there exist integers r. s such that:

$$d = ar + bs$$

- ightharpoonup If d = 1, a, b are called co-prime
- > Extended GCD:
 - Input *a*, *b*
 - Output: d, r, s

GROUPS

- > Set G, operator such that:
 - Closure: $\forall a, b \in \mathbb{G} \text{ it holds } a \circ b \in \mathbb{G}$
 - Associativity: $\forall a, b, c \in \mathbb{G}$ it holds $(a \circ b) \circ c = a \circ (b \circ c)$
 - Identity element: $\exists e \in \mathbb{G}, \forall a \in \mathbb{G} \text{ s.t.: } a \circ e = e \circ a = a$
 - Inverse element: $\forall a \ \exists a^{-1} \ \text{s.t.}$: $a \circ (a^{-1}) = (a^{-1}) \circ a = e$
- ➤ (G,•) is an Abelian group iff:
 - (G, o) is a group
 - $\forall a, b \in \mathbb{G}: a \circ b = b \circ a$
- \triangleright Example: ({0, ..., n-1}, +(mod n))
 - Another example: $(\mathbb{Z}, * \text{mod } p)$

SUBGROUPS AND ORDERS

- > Order |G| of group (G, •): # elements in G
- \triangleright Subgroup (\mathbb{H}, \circ) of (\mathbb{G}, \circ):
 - (ℍ,∘) is a group
 - $\mathbb{H} \subseteq \mathbb{G}$
- > Theorem [Lagrange]:
 - If G is finite and (ℍ,∘) subgroup of (G,∘)
 - Then |H| divides |G|

CYCLIC GROUPS

Cyclic groups (G,°) of order n is cyclic iff.: $\mathbb{G} = \{g, g \circ g, \dots, g \circ g \circ g \dots \circ g\}$

n times

- \triangleright We call g a generator of this group
- > Any element can be a generator
- > Theorem [Fermat's little theorem]:
 - If (G,•) is a finite subgroup
 - Then $\forall a \in \mathbb{G}$ it holds that $a^{|\mathbb{G}|} = 1$

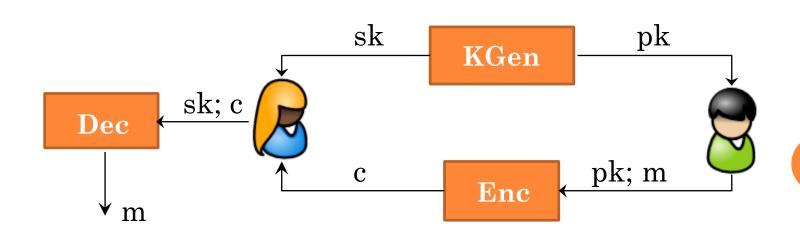
GROUPS AND SUBGROUPS WE USE

- For a prime $p: (\mathbb{Z}_p^*, *_{\text{mod } p})$
 - Integers modulo a prime, under multiplication mod p
 - Abelian (multiplication is commutative)
- ▶ Variation: sometimes in ECC we use $(E(\mathbb{Z}_{p^2}), +_E)$
- For primes $p, q: (\mathbb{G}, *_N)$ with N = pq
 - $\mathbb{G} = \{1 \le g \le N 1 \text{ s.t. } GCD(g, N) = 1\}$
 - Cardinality: # of numbers co-prime with N
 - Usually denoted by Euler's Φ function:
 - $\bullet \Phi(pq) = (p-1)(q-1)$
 - E.g.: p = 3; q = 7; $\mathbb{G} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$

PART II ENCRYPTION SCHEMES

PUBLIC-KEY ENCRYPTION

- > Syntax: algorithms (KGen, Enc, Dec) such that:
 - KGen (1^{λ}) : given security parameters, outputs tuple (sk, pk) consisting of a private/public key
 - Enc(pk; m): given plaintext and public key, outputs ciphertext c
 - Dec(sk; c): given ciphertext and secret key, outputs plaintext \widehat{m} or error symbol \bot



PUBLIC-KEY ENCRYPTION

- Correctness:
 - For all tuples $(sk, pk) \leftarrow \text{KGen}(1^{\lambda})$ and for all plaintexts $m \in \mathbb{M}$, it must hold that Dec(sk; Enc(pk; m)) = m
 - Sometimes we degrade it to ϵ -correctness in which the decryption fails with probability ϵ
- > IND-CPA: eavesdropper can't tell even 1 bit of p-text

$$(sk, pk) \leftarrow \text{KGen } (1^{\lambda})$$

 $b \leftarrow_{\$} \{0,1\}$
 $(m_0, m_1) \leftarrow \mathcal{A}(pk, 1^{\lambda})$
 $c \leftarrow \text{Enc}(pk; m_b)$
 $d \leftarrow \mathcal{A}(c, pk, 1^{\lambda})$

 \mathcal{A} wins iff. d = b

EL-GAMAL ENCRYPTION

- Before key-generation: setup
 - Pick primes p, q such that p = 2q + 1
 - Group $\mathbb{H} = (\mathbb{Z}_p^*, *_{\text{mod }p})$ and cyclic subgroup \mathbb{G} of \mathbb{H} of prime order q under the same operation
 - Generator g of \mathbb{G}
- > Key generation:
 - Secret key $sk \leftarrow_{\$} \{1, ..., q-1\}$; public key $pk = g^{sk} \mod p$
- \triangleright Encryption of message $m \in \mathbb{G}$:
 - Pick $r \leftarrow_{\$} \{1, ..., q-1\}$, set $c = (g^r \mod p, \ m \cdot pk^r \mod p)$
- ▶ Decryption of $c = (c_1, c_2)$:
 - Set $\widehat{m} = \frac{c_2}{c_1^{Sk}}$

GENERIC MESSAGES

- Message has to be in G
- What happens otherwise?
 - Could use m^2 , for $m \in \mathbb{H} \setminus \mathbb{G}$ (if $m \in \mathbb{H} \setminus \mathbb{G}$, then the order of m is not q; yet, the order of m^2 is q) **Proof in TD**
 - Encrypt m^2 instead of m, take $\sqrt{\hat{m}}$ at decryption
 - Could also modify scheme a little bit, using a hash function:
 - Encryption: $(g^r, H(pk^r) \oplus m)$
 - Decryption: $\widehat{m} = c_2 \oplus H(c_1^{sk})$
 - We can prove security as long as the hash function H preserves the pseudorandomness of pk^r

EL-GAMAL SECURITY

> Theorem:

- If there exists an adversary \mathcal{A} who can break the IND-CPA security of the El Gamal scheme with probability $\frac{1}{2} + \text{Adv}_{\mathcal{A}}$...
- ... then there exists an adversary \mathcal{J} who can break the DDH assumption in group \mathbb{H} with probability $p_{\mathcal{J}}$ such that:

$$p_{\mathbf{\beta}} = \frac{1}{2} + \frac{1}{2} \text{Adv}_{\mathbf{\beta}}$$

REMINDER: HARD PROBLEMS BASED ON DLOG

- > Setup:
 - Cyclic group G of prime order q, generator g
- DLog:
 - Given q, g, g^a , find $a \in \{1, ..., q-1\}$ (g and q fully define \mathbb{G})
- > CDH
 - Given q, g, g^a, g^b find g^{ab}
- > DDH
 - Given q, g, g^a, g^b, g^c find out whether c = ab or not
- > Note:
 - If DLog is solved, then we can solve CDH
 - If we can solve CDH, then we can solve DDH

PROOF

- What does breaking DDH mean?
- > B plays a game against a challenger
 - Depending on a bit b, B receives (g, g^a, g^b, g^{ab}) (if b = 1) or (g, g^a, g^b, g^c) , for $a, b, c \leftarrow_{\$} \{1, ..., q\}$
 - B must output a bit guess_B and wins iff. guess_B = b

PROOF

$$C_{B}$$

$$d \overset{\$}{\leftarrow} \{0,1\}$$

$$a,b,c \overset{\$}{\leftarrow} Z_{q}$$

$$z \coloneqq ab \text{ if } d = 1$$

$$z \coloneqq c \text{ if } d = 0$$

$$f \overset{\$}{\leftarrow} \{0,1\}$$

$$f \overset{\$}{\leftarrow} \{0,1\}$$

$$f \overset{\#}{\leftarrow} \{0,1\}$$

$$f \overset{\#}{$$

ANALYSIS

- > Analysis:
 - If d = 1, B got (g, g^a, g^b, g^{ab}) , which means A plays the true game: so A wins w.p. $\frac{1}{2} + Adv_A$
 - If d = 0, B got (g, g^a, g^b, g^c) , so A wins w.p. $\frac{1}{2}$
- > Question: how do we simulate encryption queries?
- > Total success:

$$\Pr[B \text{ wins}] = \Pr[B \text{ wins} | d = 1] \Pr[d = 1] + \Pr[B \text{ wins} | d = 0] \Pr[d = 0]$$

$$= \frac{1}{2} \Pr[B \text{ wins} | d = 1] + \frac{1}{2} \Pr[B \text{ wins} | d = 0]$$

$$= \frac{1}{2} \Pr[A \text{ guesses} | d = 1] + \frac{1}{2} \Pr[A \text{ guesses} | d = 0]$$

$$= \frac{1}{2} \left(\frac{1}{2} + \text{Adv}_A \right) + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \cdot \text{Adv}_A$$

MALLEABILITY

- > Malleability, to maul:
 - Informally: ability to "re-shape" things
 - Not always bad crucial in homomorphic crypto
 - Bad for IND-CCA
- > ElGamal is malleable:
 - Say we encrypt message m with randomness r $(c_1, c_2) = (g^r, m \cdot pk^r)$
 - Now pick random $s \leftarrow_{\$} \{1, ..., q-1\}$
 - Maul ciphertext: $c_1^* = c_1^s = g^{rs}, \ c_2^* = c_2^s = m^s \ pk^{rs}$
 - Then (c_1^*, c_2^*) is an encryption of m^s

IND-CPA vs IND-CCA

> IND-CPA: eavesdropper can't tell even 1 bit of p-text

```
(sk, pk) \leftarrow \text{KGen } (1^{\lambda})
b \leftarrow_{\$} \{0,1\}
(m_0, m_1) \leftarrow \mathcal{A}(pk, 1^{\lambda})
c \leftarrow \text{Enc}(pk; m_b)
d \leftarrow \mathcal{A}(c, pk, 1^{\lambda})
\mathcal{A} \text{ wins iff. } d = b
```

- ➤ IND-CCA: even if we have power of decryption, can't learn even 1 bit of fresh message
 - Same as before, but include Dec. oracle
 - A must not query challege ciphertext to Dec.

MALLEABILITY AND IND-CCA

- ➤ Malleability: one can use a relation on the input to induce a relation on the output.
- Malleability usually implies non IND-CCA
- > Why?
 - Key to IND-CCA success: A cannot query the challenge ciphertext
 - Maul challenge ciphertext, then query it to Dec
 - Perform inverse transformation

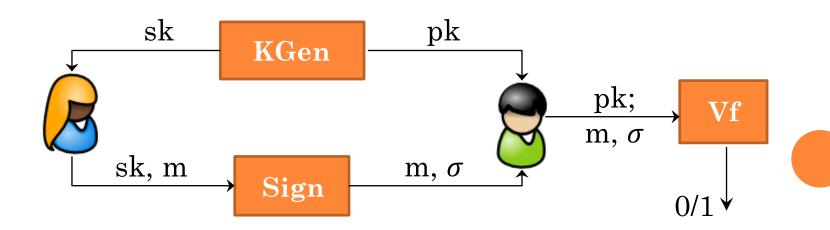
IND-CCA ENCRYPTION

- Much harder to get than IND-CPA encryption
- Must prevent malleability, so usually we would use something to verify the integrity of the message
- Would using a hash function help?
 - $\operatorname{Enc}(pk, H(m)) : \operatorname{doesn't} \operatorname{work}.$ **Why not?**
 - How about H(Enc(pk; m))?
- > Could we use a PRF instead?
 - Enc(pk, PRF(K, m)): security is ok, but why would we do PKE if we already had a shared key?

PART III SIGNATURE SCHEMES

DIGITAL SIGNATURES

- > Syntax: algorithms (KGen, Sign, Vf) such that:
 - KGen (1^{λ}) : given security parameters, outputs tuple (sk, pk) consisting of a private/public key
 - Sign(sk; m): given plaintext and secret key, outputs signature σ
 - Vf(pk; m, σ): given message, signature and public key, outputs a bit 1 if σ checks for m, 0 otherwise



SIGNATURE SECURITY

- Correctness:
 - For all tuples $(sk, pk) \leftarrow \text{KGen}(1^{\lambda})$ and for all messages $m \in \mathbb{M}$, it must hold that Vf(pk; m, Sign(sk; m)) = 1
 - Sometimes we degrade it to ϵ -correctness in which the verification of a signed message fails with probability ϵ
- > EUF-CMA: adversary can't forge fresh signature

```
(sk, pk) \leftarrow \text{KGen } (1^{\lambda})
(m, \sigma) \leftarrow \mathcal{A}^{\text{Sign}(*)}(pk, 1^{\lambda})
Store list \mathbb{Q} = \{(m_1, \sigma_1), \dots (m_k, \sigma_k)\} of queries to Sign
```

 \mathcal{A} wins iff. $(m, *) \notin \mathbb{Q}$ and $Vf(pk; m, \sigma) = 1$

RSA SIGNATURES

- > RSA setup:
 - Large primes p, q, let N = pq
 - Subgroup of co-primes with N, size $\Phi(N) = (p-1)(q-1)$
 - Work in subgroup mod $\Phi(N)$
- > RSA signatures:
 - KGen: Find $e \in_R \{1, ..., \Phi(N)\}$ such that GCD(1, $\Phi(N)$) and its inverse d such that $e \cdot d = 1 \mod \Phi(N)$
 - Public key PK = (N, e); Secret key SK = d
 - $\underline{\text{Sign}}$ message m:
 - $\sigma = m^d \mod N$
 - Verify signature σ for message m
 - Output 1 iff. $m = \sigma^e \mod N$ and output 0 otherwise

NOT EUF-CMA

RSA Signature

• Key Generation:

$$pk = N, e$$

$$sk = d$$

• Sign:

$$\sigma = m^d \bmod N$$

• Verify:

$$m \stackrel{?}{=} \sigma^e \mod N$$

- ➤ No Sign(·) queries:
 - Pick random string *s*
 - Compute $\widehat{m} = s^e \mod N$
 - Output (\hat{m}, s) as forgery
- > Forgery with 2 queries:
 - Want to forge signature for given message *m*
 - Pick m_1 at random, ask signature: $\sigma_1 = m_1^d \mod N$
 - Compute m_2 s.t. $m_1 m_2 = m \mod N$, get $\sigma_2 = m_2^d \mod N$
 - Output $(m, \sigma_1 \sigma_2 \mod N)$

HOW TO GET EUF-CMA

- Use Hash functions, and sign hash of message
- > The Probabilistic Full-Domain-Hash RSA scheme:
 - Use a hash function $H: \{0,1\}^* \to \mathbb{Z}_N^*$
 - KGen: Obtain $(N, e, d) \leftarrow \text{KGen}_{RSA}(1^{\lambda})$, set: PK = (N, e); SK = d
 - Sign: Choose random $r \in \{0,1\}^*$, compute $y = H(r \mid m)$, output signature:

$$\sigma = (r, y^d \bmod N)$$

• <u>Verification</u>: receive $m, \sigma = (r, s)$, output 1 iff. $s^e = H(r \mid |m)$

SECURITY OF PFDH-RSA

- > Assumptions on hash functions:
 - Collision-resistance sometimes suffices
 - However, proofs for signatures are hard to do relying just on collision resistance
 - Need a stronger assumption
- > Random oracles, the ROM:
 - Imagine an idealization of a hash function
 - Every time we query the idealization on a value x, check RO has not been queried with x before:
 - If so, output new uniformly random value of good length
 - Else output previously seen value for *x*

RSA ASSUMPTION

- > The RSA problem:
 - Given an RSA instance, with public key (N, e)
 - Given "ciphertext": $C = m^e \mod N$
 - Compute *m*
- > The RSA assumption:
 - The RSA problem is hard to solve for a PPT adversary
- > The strong RSA assumption:
 - Alow Adversary to choose exponent e
 - Given (N, C), hard to output (m, e) s.t. $C = m^e \mod N$

SECURITY OF PFDH

- > Theorem:
 - Take $|r| = \text{Log } q_S$
 - In the random oracle model
 - If there exists an adversary A against the EUF-CMA of the PFDH scheme, making at most q_H queries to H and at most q_S queries to Sign, winning with probability p_A ...
 - Then there exists an adversary B that solves the RSA problem with probability

$$p_B \ge \frac{1}{4} p_A$$

Programming a RO

- Key observations:
 - A does not have much use submitting messages to Sign oracle without submitting them to Hashing RO first
 - Not entirely true, we would lose a guessing term here
 - A cannot output a meaningful forgery for a message m without submitting it to Hashing RO first
 - Again, not entirely true, same considerations as before
 - A has no use querying the same message twice to the random oracle (since the RO always returns the same thing)

SECURITY PROOF FOR PFDH-RSA

- > Proof intuition:
 - The random oracle randomizes the messages to be signed; in fact, by choosing different values of r we get different values of H(r || m)
 - Multiple related signatures per message:
 - $om \xrightarrow{r_1} (r_1, [H(r_1 \mid | m)]^d \mod N)$
 - $om \xrightarrow{r_2} (r_2, [H(r_2 \mid \mid m)]^d \mod N)$
 - o
 - $om \xrightarrow{r_k} (r_k, [H(r_k \mid \mid m)]^d \mod N)$
 - Because of the RO, all hashes are different

Constructing the Reduction

- > Adversary B plays against the RSA problem
- It needs to simulate the EUF-CMA game to adversary A, and use its output

> Setup:

- Adversary B receives tuple (N, e) and $C = m^e \mod N$ for some m
- B must then answer queries from A for signatures
- B prepares for each m a list of q_S values like this:
 - \circ Choose random r_i
 - Choose random $x_i < N$
 - Given e calculate: $z_i = x_i^e$
 - Store tuple (m, r_i, x_i, z_i) ; all tuples with same m make up L_m

THE REDUCTION

- > Every time A queries the RO $H(m \mid \mid r)$, B responds as follows:
 - Create initially empty table T with entries (·,·,·)
 - If m is queried for the first time, B first makes up L_m
 - Else, assume L_m is already created
 - If there exists in \mathbb{T} an entry $(m \mid | r, x, z)$, return z
 - If $r \in \{r_1, ..., r_k\}$ from list L_m , then output z_i and insert in \mathbb{T} an entry $(m \mid | r_i, x_i, z_i)$
 - Else, if r not used in L_m , choose random x and output to A the value $z = C x^e \mod N$ and store $(m \mid |r, x, z)$ in \mathbb{T}
- \triangleright Remember A has q_S signature queries

FINISHING THE REDUCTION

- > Apart from RO queries, A can ask signature queries to the signing oracle
 - B has to respond to these queries
- \triangleright When A queries Sign(m):
 - If m does not have a corresponding L_m , generate it
 - Else, pick the next value of r in that list, see if there is a related entry $(m \mid | r, x, z)$ in \mathbb{T} , output (r, x)
 - If there is no such related entry, create one, and output the same thing

WINNING OR LOSING

> Finally A outputs a forgery of the type:

- If $r \in L_m$, abort
- Else, if $r \notin L_m$, find corresponding entry in \mathbb{T} and output (to B's challenger):

$$\frac{s}{x} \mod N$$

- > Note: A outputs forgery on message not queried to signature oracle before
 - But he could have input $(m \mid \mid r)$ to RO instead, got x
 - Only way to get r from L_m is by guessing it:

Total probability it doesn't happen:
$$(1 - 2^{-|r|})^{q_s}$$

RANDOM ORACLES

- Idealising hash function in a very useful way
 - Can get nice properties for key-exchange, encryption, signatures, and many other primitives
- > However, random oracles are a bit too ideal
 - We know that some primitives that are "secure" in the presence of random oracles are insecure no matter which hash function we use for our RO
- > Proofs in ROM:
 - Tricky bit is to program the RO: store queries, know what to answer
- > Alternative to ROM: standard model

FULL-DOMAIN HASHING

- Generalized beyond RSA by trapdoor permutations
- Trapdoor permutations:
 - Family of 1-way permutations $\{f_K: D_k \to R_k\}$ with $K \in \mathbb{K}$, such that D_K , R_k , \mathbb{K} are binary sets of arbitrary length. Includes algorithms (Gen, Sample, f, f^{-1}) such that:
 - Gen: on input 1^{λ} outputs tuple $K \in \mathbb{K}$ and trapdoor T
 - Sample: on input the key K, this algorithm efficiently samples input $x \in D_K$
 - f: on input K and any $x \in D_K$, efficiently outputs $y = f_K(x)$
 - o f^{-1} : on input K, trapdoor T and any $y ∈ R_K$, efficiently outputs inverse x such that $y = f_K(x)$
 - Security: without trapdoor *T*, hard to invert *f*

PKE AS TRAPDOOR PERMUTATION

Trapdoor permutation

• Algorithm Gen

K

T

• Function *f*: efficient to get

$$y = f_K(x)$$

• Inverse f^{-1} easy with T

$$x = f_K^{-1}(T, y)$$

PKE

• Algorithm KGen

PK

SK

• Encryption algorithm

$$y = \operatorname{Enc}_{PK}(x)$$

Decryption algorithm

$$x = Dec_{SK}(y)$$

GENERALIZED FDH

- ➤ Take Trapdoor permutation TDP = {Gen, Sample, f, f^{-1} }
- ➤ Take hash function $H: \{0,1\}^* \rightarrow \{0,1\}^n$
- ► Key Generation: Run $(K, T) \leftarrow \text{Gen}(1^{\lambda})$. Set: PK := K and SK = T
- Signing: Compute $r \coloneqq H(m)$, then do: $y \coloneqq$ Sample (PK; r)Signature is: $\sigma = f_T^{-1}(y)$
- Verification: Do r := H(m), then: y := Sample (PK; r).

 Output 1 iff. $f(\sigma) = y$