REVIEW OF LAST TIME

Principle of provable security:
Define your model: syntax, adversary, goal
Design your protocol
Set your assumptions
Prove security

Pseudorandom generators:
Obtain big randomness from small seed
Security: indistinguishability from random

COURSE OBJECTIVES

» To understand:

= The principles of security proofs

= Typical security models for various primitives
Basic security reductions

INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

INSA -

(&:1RISA

SYMMETRIC CIPHERS AND PRGS

‘ Symmetric Encryption, Perfect Ciphers,
® Definitions of PRGs and PRFs

ENCRYPTION SCHEMES

Designed to protect message confidentiality
Usually 2 parties, called Alice and Bob; adversary is Eve
Plaintext M encrypted by Alice, becoming a ciphertext C
Ciphertext C decrypted by Bob to some plaintext M’

Necessary: Bob (and maybe Alice) must have a secret k

L 2

Alice ‘L T Bob

SECRETS AND NON-SECRETS

Kerckhoff: Consider the algorithm public
If the algorithm is compromised, no problem
More eyes to look at the security of a public algorithm

Symmetric-key encryption (block/stream ciphers)
Alice and Bob share secret key k

£ 8-

M,k

BAsic CIPHERS

» Caesar cipher and extensions
= Permutation cipher
= Key 1s the number of letters we permute by
- Caesar: k =3
- BLOCKCIPHER becomes EORFNFLSKHU

-E-EI-E------EEEE

D E F G H J K L M N OUP QIR S T U

VWX Y Z A B C

THE CAESAR CIPHER

» Kerckhoff: algorithm is public
> We need the key

- Key space 1s too small : brute force works in one go
with probability % and works for sure in 26 attempts

- Attack works only if message 1s meaningful

Brute force is base line for attacks against

ciphers

ONE-TIME PAD

Substitution cipher, C =M + K (e.g. mod 26)

Key length equal to message length

If M = BLOCKCIPHER, and K = PRZANIBQTCS
Say message 1s meaningful and key 1s meaningful

Can we do better than brute force?
Yes, look at language statistics

Say message 1s meaningful, but key 1s truly random
Key hides message information-theoretically

o
Q =
Z, N
o >
< Z
O
> 3
T Q
&~

SECURITY DETAILS

What if same key used multiple times in N attempts?
Case 1: Adversary knows it (described in protocol)
Passive eavesdropper learns M; XOR M,

Equivalent to using meaningful key
Case 2: Adversary does not know (accidental collision)

Even assuming this is problematic,

this happens rarely (w.p. < () 2715

What does it mean that the key “hides” a message?

BLOCKCIPHER + “PRZANIBQTCS” = RCNDYLKFAHJ
UNIVERSALLY + “XOEHUUSEPWO” = RCNDYLKFAHJ

YETIMONSTER + “TYUVLXXNGCS” = RCNDYLKFAHJ
Message 1s meaningful: probability bound by dictionary attack

(GUARANTEE OF ONE-TIME PAD

Ingredients:
Set &, which is an alphabet (like A, B, ..., Z)
Length of messages [
Subset M € &' of meaningful messages of length I

(14 b

An (Abelian) group operation " + " on &*, inverse operation

Guarantee:

The cipher consisting of:

o Picking K randomly from &
o Encrypting plaintext M e Mto C =M + K

o Decrypting plaintext CtoM =C — K
guarantees that:
Prob[ptext = M | ctext = C] = Prob [ptext = M |

Perfect cipher

PERFECT CIPHERS

Perfect ciphers:
Prob|[ptext = M | ctext = C] = Prob[ptext = M]

Ciphertext gives no information on plaintext

Theorem 1:

Take a perfect cipher with plaintext alphabet ¢/ (all messages
occuring with non-zero probability) and key space &

Then the size of ¥ is at least equal to the size of g

Proof:

First observation: take plaintexts M; # M,. Then for all k €
it holds that Enc(k; M;) # Enc(k; M,) . Why?

KEY-SIZE OF PERFECT CIPHERS

Theorem 1:
Take a perfect cipher with plaintext alphabet ¢/ (all messages
occuring with non-zero probability) and key space &

Then the size of % 1s at least equal to the size of g

Proof:
Reduction to absurd: Suppose |¥| < |/ — 1
Look at mapping (M, k) - C (through encryption)
Order ¢ in some way (lexicographically or just randomly)
Take the first message, denote 1t M,
Pick key k;, compute C = Enc(ky,M;). If C = 2 (invalid), pick again
Continue picking keys k # k; and run Dec (C, k)

Even if all decryptions give a valid result, Obs 1 tells us there
exists at least one M* that C does not decrypt to.

KEY-SIZE OF PERFECT CIPHERS

Theorem 1:

Take a perfect cipher with plaintext alphabet ¢/ (all messages
occuring with non-zero probability) and key space &

Then the size of % 1s at least equal to the size of g

Proof:
Reduction to absurd: Suppose |¥| < |/ — 1
Look at mapping (M, k) - C (through encryption)

Even if all decryptions give a valid result, Obs 1 tells us there
exists at least one M* that C does not decrypt to

Then for this message it holds that:

Prob[ptext = M* | ctext = C] = 0 +# Prob|ptext = M, | ctext = C]
This 1s impossible (perfect cipher)
Hence |X| = ||

INDISTINGUISHABILITY

Consequence of Theorem 1:
OTP has optimal key size (and it’s long!)

Another way to phrase perfection property:
Indistinguishability:
For any messages M; # M, and any ciphertext C :
Prob[Enc(*, M;) = C] = Prob[Enc(*, M,) = C]

Theorem 2: A cipher 1s perfect if, and only if, it
has the indistinguishability property

Proof: in the TDs.

SOME CONCLUSIONS

Perfect ciphers:
Ciphertext reveals nothing about the plaintext

Equivalently phrased as: each ciphertext could
correspond to any plaintext

... But they require |%| = ||

One Time Pad (OTP):

Is a perfect cipher

Requires: changing key at each encryption
Key length = message length
Unfortunately, this key length is optimal

PART 11
OTP witH PRG

PRGS

Pseudorandom generator
PRG: {0,1}"— {0,1}", form < n

$
s<{0,1}™"

$ Gen, () .
b 10,1} « Ifb =1, return x < {0,1}"
d « A% 0O (m, n) Else, return x « PRG(s)

Awinsiffd = b

(k, €)-secure PRG:

A pseudorandom generator PRG 1s (k, €)-secure if, and
only if, an adversary making at most k queries to Gen,

. 1
wins w.p. at most > + €

A RELAXATION OF PERFECTION

Security of perfect ciphers does not depend on the
attacker’s computational resources

Attacker with 200 years of computation time still
learns nothing from ciphertext

... however, we need very large keys

We want smaller keys, but sufficient security
Idea: bound the adversary’s resources
Allow some (small) information leakage
Adversary can “win” with very small proability

LESS-THAN-PERFECT CIPHERS

Now assume that we take |¥| < |cM]
This introduces some attacks

Meaningful message, random key:
Try to decrypt ciphertext with any possible key
This yields a list of “meaningful” possible plaintexts

Compare to perfect security
PS: a ciphertext can hide any meaningful message

Imperfect security: ciphertext can “hide” at most | %]
messages, with || < ||

Key length determines security

COMPUTATIONAL SECURITY BASICS

Generic cipher family, depends on “sec. parameter’ n
Usually the length of the secret key

Encryption and Decryption are generic algorithms

Cipher is secure if any adversary A can “break” the
encryption scheme with negligible probability

Smaller than */pyr, for any polynomial Poly[n]

NEGLIGIBLE PROBABILITIES

What is negligible in theory?
Our favourite: 27"
Second best: Poly[n] - 27"
Another possibility: 27198l is non-negligible, but
2~ log*[n] jg negligible

What 1s negligible 1in practice?
Say the adversary wins with probability 27" for a
small value of n

Trying again and again over a large amount of data,
say 1GB, will eventually let &2 succeed

In practice, we like a security of at least 2789

COMPUTATIONAL CIPHER SECURITY

Think of it in terms of a game

The adversary plays this game against our cipher and
the parties using it — encryptor, decryptor

A can see ciphertexts (polynomially many of them)

Security notion: indistinguishability (of ciphertexts)
from random

WHAT IS SYMMETRIC ENCRYPTION

» Tuple of algorithms (KGen, Enc, Dec) such that:

- KGen(1Y) outputs symmetric key k
= Enc(k, M) outputs cyphertext C
= Dec(C, k) outputs plaintext M

k
KGen l
3 M

— -
E

k

M,k

3

SEMANTIC SECURITY (SYM. ENCRYPTION)

» Also called: IND-CPA — indistinguishability against
chosen plaintext attacks

» Adversary plays against challenger

= Challenger chooses key

= Challenger chooses a bit b
Adversary can query Enc(M) oracle, returns Enc(k, M)
Test: A chooses messages my, m,; such that |my| = |m4|
Challenger returns Enc(k, my,)
A can go on querying Enc oracle
Finally, A outputs guess d of b

THE IND-CPA GAME

$
k « KGen(1Y)

be{01)

(mg, my) « AERCO(y) with |mg| = |my]|
¢ < Enc(k,my)

d « AEnC()()/, C)

Awinsiffd = b

(q.€)-secure Symmetric Encryption:

A symmetric-key encryption scheme SEnc is (q, €)-
secure if, and only if, an adversary making at most q

. : 1
queries to Enc wins w.p. at most > + €

LLOR VERSUS ROR

Previous version of game 1s Left-or-Right IND-CPA

There are some more versions:

Real or Random

Ask then Guess
Etc.

In TD you will discover some of these

Essence of IND-CPA: the output of an encryption
function gives no advantage to know plaintext

A type of pseudorandomness as well...

ADVANTAGE & UNPREDICTABILITY

In PRG game the adversary’s winning probability
should not be larger than 1/, + ¢
We call Pr[A wins] — 1/, the advantage of &

Unpredictability theorem:
If G:{0,1}"— {0,1}™ with m > n is a bounded-secure

$
PRG, then for a randomly chosen s < {0,1}", no poly-
runtime algorithm gP given the first j bits of G(s) can

predict the (j + 1)-th bit w.p. % + ¢ for ¢ & Negl[n]

PERFECT TO IMPERFECT CIPHER

Why would we want that?
Well, it’s more efficient, since |%] < ||

Recall the OTP

Traditional OTP for = M = {0,1}™

$
Choose random k<«

Encrypt message mto:c:= k@ m
Decrypt ciphertext cas: m = c P k
Unconditionally secure...
.. But:

Key can only be used one time
Key is as long as message

PERFECT TO IMPERFECT OTP USING PRG

Recall the OTP
Traditional OTP for = M = {0,1}™"

o Choose random k<« ¥

o Encrypt message mto:c:= k@ m
o Decrypt ciphertext cas: m = c P k

Now replace random key generation by PRG:
OTP for M = {0,1}™ with = {0,1}"* and n <m
Use a bounded-secure PRG G:{0,1}"*— {0,1}"™

$
o KeyGen: choose (once) k <« ¥

o Encrypt message masc = G(k) ®m
o Decrypt message as: m :=c @ G (k)

PERFECT/IMPERFECT CIPHERS

Perfect ciphers:
Prob[ptext = M | ctext = C] = Prob[ptext = M]
Alternatively:
For any messages M; # M, and any ciphertext C :

Prob[Enc(*, M;) = C] = Prob[Enc(*, M,) = (]

Semantic security of imperfect ciphers:

For k < K, b« {0,1}, and for any two messages mg,, m,
no polynomial-time adversary 2 given Encj,(m;) can

output d = b with probability 1/, + € for € & Negl[| %]

OUR IMPERFECT OTP wiTH PRG WORKS!

Theorem:

The OTP + PRG cipher we considered 1s q-semantically
secure as long as the PRG i1s q-bounded-secure

Formally: for any adversary ¢# against the g-semantic

security of OTP+PRG, there exists a q-bounded
adversary B against the PRG-security of G such that:

Pr|g# wins] < Pr[B wins]

If OTP + PRG 1s insecure, then G 1s 1nsecure

IR

As long as G is secure, OTP + PRG 1s secure

PROOFS BY GAME HOPPING

Technique of game hopping (Shoup, 1999):
Start from original security game, G,
Modify it to “restricted” game G,

Argue that G, = G,
Continue till last game can only be won by trivial A

Game hops:
Restrict use of an oracle
Return different output to that of oracle
Restrict number of (honest) participants

LET’S PROVE THIS
Proof:

Game 0: original semantic security game
Game 1: replace G(s) by U™ in encryption
What kind of game equivalence do we need?

my @D G(s) my @ G(s) my @ U™ m, U™
N/ N/

6 B
1 1

0/1 0/1

GAME EQUIVALENCE

Proving games equivalent:
A matter of deciding winning probability
Game hop should not alter A’s winning probability
... 1n fact, alteration exists, but with negl. probability

Some ways of proving equivalence:
Prove that A can make a specific query only by accident
So, with the exception of an accident, A does not make query

Prove that reduction can simulate well some queries
Which means, challenger must only handle the rest

Prove that the adversary cannot distinguish btw. outputs

BACK TO THE PROOF

Proving these games equivalent

A cannot distinguish between left and right output
Equivalent to proving: if g&s game is altered, then there
exists a distinguisher between G (s) and U™

my @D G(s) my @ G(s) my @ U™ m, U™
N/ N/

6 &
| |

0/1 0/1

LET’S PROVE THIS
Proof:

Claim: if there exists a distinguisher D between games,
then we can construct PRG adversary B from D

What is a distinguisher?

my @D G(s) my @ G(s) my @ U™ m, U™

N/ N/

w G(s)— i ym A8
l B l

0/1 l 0/1
0/1

A DISTINGUISHING GAME

In our case, Gy, G; are equivalent except output

Distinguisher plays against a challenger
Its goal is to distinguish G, from G, not to win them
Challenger first sets up games (choose seed, bit b)
Then challenger also picks additional bit b*
Adversary plays normally
For Encrypt queries: Chg returns output from G-
Finally A will need to output guess d* of b*

Constructing the reduction:

Show that if D can distinguish G, from G;, then we
can construct B that distinguishes G(s) from U™

WHO PLAYS WHAT GAME

D plays distinguishing game:

$
k « KGen(1Y)
$
b,b* <{0,1}

(mg, m,) « AEnC()(Y) with [my| = [m4|

¢ < Enc(k,my)
d* < AFO(y, o)

A wins iff d* = b*

B plays PRG game:
S i {0, 1}

$
b<{0,1}
d « A% 0 (m,n)

Gen, ()

$
« Ifb =1, return x < {0,1}"
* Else, return x < PRG(s)

Awinsiffd = b

CONSTRUCTING THE REDUCTION B

CB B —_ CD
$
s <{0,1}™ Setup done
8 »
b* <{0,1} b «{0,1} Setup done
. Query Gen,,) Enc(m)
$
If b* =1, return x « {0,1}"
Else, return x < Ggpan(s)
X : C=m®&hx C ‘
~ Query Gen, 4 Mo, My
x* " =my O x° L

Output d*

>

Guess bit d*

v

&
<

ANALYSIS OF REDUCTION

» If Cz drew the bit b* = 1 then D sees:

C, B = C,
se {0,13™ Setup done ‘
b i {0,1} Setup done .
_ Query Gen, . Enc(m)
« Ifb* =1, return x hd {0,1}" C =
N C= me x C ‘
- Query Gen, - ot
‘ . C*=my @ x* ¢ ”

»
|

| This is the output of game G4 |

ANALYSIS OF REDUCTION

» If Cg drew the bit b* = 0 then D sees:

Cp B =Cp D
S < {0,13™ Setup done ‘
b i {0,1} Setup done .
. Query Gen, . Enc(m)
« Ifb* =0, return
xiGenb(s) X R C=mPx C A
Query Gen, < Mo, My

A

C*

x* C*=m, O x* > .
| This is the output of game G, |

CONCLUDING ANAYLSIS

Say that D wins w.p. % + €

Then B wins with the same probability

Conclusion for proof:
Pr[A wins G,] < Pr[A wins G,] + €

= Pr|A wins G,] + Advpgrg|[B]
Winning G;:

A has to distinguish between my @ r, and m; @ r;
But this time 1y, r; truly random
Winning this game 1s equivalent to distinguishing

between two truly random numbers

Thus, Pr[A wins G;] = %

CONCLUSION OF PROOF
Proof:

Game 0: original semantic security game
Game 1: replace G(s) by U™ in encryption
Winning game 1: probability of %%
Pr[A wins G,] < Pr[A wins G,] + €p
1

= Pr[A wins G;] + (Pr[D dist. Go from G, | =)

1 . 1 .
5T (Pr[B wins| — E) = Pr[B wins].

IND-CPA ENCRYPTION IN PERSPECTIVE
PRG + OTP construction 1s IND-CPA secure

IND-CPA-secure encryption is also PRF-secure

Pseudorandom functions:
F: Keys X Input — {0,1}*

Security:
Bounding output length to n bits
K i Keys Geny (x)
b i {0,1} « If b=1, return x i {0,1}"
d « A% (X (Keys, Input) * Else, return x < Fg(x)

Awinsiffd = b

CONCLUSION FOR TODAY

MODELS AND PROOFS

More security models:
IND-CPA security (left-or-right version)
Pseudorandom function (PRF)

Construction:
IND-CPA/PRF from PRG (and OTP)

Proofs:
Game hop technique
Distinguishing between games

QUESTIONS?

PSEUDORANDOMNESS

What is a “random” string?

Usually defined as a string for which the probability
that any of the bits is 1 is exactly %

How does the attacker distinguish in practice?
Fixed bits
Fixed relationship between bits

Un-fixed, but biased relationship between bits (occur-

ring with prob. p, such that |p — 1/, | non-negligible)

Theorem: In a random string, the probability that

there are less than Iml/ 3 bits equal to 1 1s negligible
Proof in TD

STATISTICAL TESTS

Theorem:

Consider ¢, x to be the poly-sized set of all statistical
tests T, which have poly-runtime, which take as input
a sample of k bitstrings of length m, for a known, fixed
k € Poly[m] and which output 0 (if the string sample is
not random) and 1 (if the string sample is random)

Assume that we have a PRG G:{0,1}" - {0,1}'"" form = 2n

Then: G 1s a secure PRG against a k—bounded adversary
21, and only if, for all T}, , € gk 1t holds that for

$
s « {0,1}"*, T, x run on randomly chosen k-sized samples
of G(s) returns 0 w.p. at most ¢ € Negl[m]

PROOF BY REDUCTION

Theorem:

Assume Ty, € dmr With input a sample of k bitstrings of
length m, outputting 0 (if not random) and 1 (if random)

Assume G:{0,1}"* - {0,1}'* form = 2n

$
Then: G 1s k—bounded secure iff. for s < {0,1}*, VT k € dmk
run on the output dist. of G returns 0 w.p. € € Negl[m]

Proof : =

Say G 1s k-bounded secure PRG

Assume 3Ty, € i Which returns O w.p. § € Negl[m]
Claim: § & Negl[n] . Why 1is this true?

Construct k-bounded 2 against k-bounded sec. of G s.t. /2
wins with probability p AE Negl[n]

PROOF BY REDUCTION

Theorem:

Assume Ty, € dmr With input a sample of k bitstrings of
length m, outputting 0 (if not random) and 1 (if random)

Assume G:{0,1}"* - {0,1}'* form = 2n

$
Then: G 1s k—bounded secure iff. for s < {0,1}*, VT k € dmk
run on the output dist. of G returns 0 w.p. € € Negl[m]

Proof : =

: : $:
% plays the PRG game. First the game picks: s < {0,1}" bit b
Query Geny, k times (ok, 2 1s k-bounded), get X = {x4, ..., X3}
Run T, on X, get output d € {0,1} (ok, test has poly-runtime)
If &2 does not know which test is good, it can run all of them

Return output d to PRF game

If & tried all tests, return min of all d values

PROOF BY REDUCTION

Proof :

2 plays the PRG game. First the game picks: s i {0,1}" bit b
Query Gen, () k times (ok, o2 1s k-bounded), get X = {xq, ..., x;}
Run T;,, , on X, get output d € {0,1} (ok, test has poly-runtime)
Return output d to PRF game

Analysis:
Obs 1: Tjp x always returns 11f bit b = 1 (x4, ..., x; random)
Obs 2:1f b = 0 then X contains outputs of G. Then T,
returns 0 w.p. § € Negl[m] (by assumption)
A wins w.p. Pr[Awins |b = 1] - Pr[b = 1] + Pr[Awins | b = 0] -
Pr[b =0]=1/,+ 1/, §, with § & Negl[n]
So G not a secure PRG. Contradiction

FOOD FOR THOUGHT

Some significant proof steps:
Negl[m] = Negl[n]
Requiring m € Poly[n]

dmx requires a sample of £ elements
Requiring that our 2 is at least k-bounded!

d'mk runs in polynomial time
Else, a bounded adversary cannot run this test

Statement about test holds for randomly chosen seed

If it held only for some seeds, we would not be able to trans-
fer winning probability (PRG game first picks seed at rnd.)

We could have said it held for ALL keys. But then, it would
not be an iff. statement. Let’s see why.

NOW THE OTHER WAY

Theorem:

Assume Ty, € dmr With input a sample of k bitstrings of
length m, outputting 0 (if not random) and 1 (if random)

Assume G:{0,1}"* - {0,1}'* form = 2n

$
Then: G 1s k—bounded secure iff. for s < {0,1}*, VT k € dmk
run on the output dist. of G returns 0 w.p. € € Negl[m]

Proof : &

Say V Tk € dmi returns O w.p. at most § € Negl[m]

Say 3 k—bounded A winning w.p. 1/, + ¢ & Negl[n]

Again € € Negl[m]

Construct poly-time test T, , that outputs O w.p. p; € Negl[m]
Claim: £ 1s that T,

PSEUDORANDOMNESS

Intuition:

If A can’t tell ciphertexts from completely random
strings of the same lengths, then:

A can’t see a plaintext/ciphertext dependence

A can’t see a key/ciphertext dependence

Indistinguishability of real cryptographic systems
from their 1dealizations 1s fundamental to provable
security

PSEUDORANDOM GENERATORS (PRGQG)

Principle: start from a small, random string (called a
seed), get a larger string that looks random

PRG: {0,1}" —» {0,1}* for m>n

Security: a “good” PRG outputs strings that are
indistinguishable from random (by an adversary)

Seed s PRG(s)
length n T length m

Deterministic,
public algorithm

THE SECURE-PRG GAME

$
s « {0,1}" Geng,():
$
b i {0,1} If bp=1thenx« U™
d « 2% O(m,n,PRG) Else x « PRG(s)
Return x
A wins iff. b = d

Unbounded vs. bounded &2

Unbounded: as many calls to Gen, as ¢# wants

Bounded: only polynomially many calls, poly-runtime
k-bounded: only k calls, poly-runtime

(k, £)-Secure PRG: G is a k-bounded-secure PRG if, and
only if, any k-bounded adversary g2 wins w.p. at most 1/, + ¢

(asymptotically) k-secure: € € Negl[n]

