

INTRODUCTION TO PROVABLE SECURITY

Models, Adversaries, Reductions

CRYPTOGRAPHY / CRYPTOLOGY

- "from <u>Greek κρυπτός</u> kryptós, "hidden, secret"; and <u>γράφειν</u> graphein, "writing", or <u>-λογία</u> <u>-logia</u>, "study", respectively"
- "is the practice and study of techniques for <u>secure</u> <u>communication</u> in the presence of third parties (called <u>adversaries</u>)."

Source: www.wikipedia.org

SOME CRYPTOGRAPHIC GOALS

- Confidentiality
 - Content of conversation remains hidden
- Authenticity
 - Message is really sent by specific sender
- Integrity
 - Message has not been modified
- Privacy:
 - Sensitive (user) data remains hidden
- Covertcy
 - The fact that a conversation is taking place is hidden
- **>**

SECURITY BY TRIAL-AND-ERROR

- ➤ Identify goal (e.g. confidentiality in P2P networks)
- Design solution the strategy:
 - Propose protocol
 - Search for an attack
 - If attack found, fix (go to first step)
 - After many iterations or some time, halt
- Output: resulting scheme
- > Problems:
 - What is "many" iterations/ "some" time?
 - Some schemes take time to break: MD5, RC4...

PROVABLE SECURITY

- > Identify goal. Define security:
 - Syntax of the primitive: e.g. algorithms (KGen, Sign, Vf)
 - Adversary (e.g. can get signatures for arbitrary msgs.)
 - Security conditions (e.g. adv. can't sign fresh message)
- Propose a scheme (instantiate syntax)
- Define/choose security assumptions
 - Properties of primitives / number theoretical problems
- ➤ Prove security 2 step algorithm:
 - Assume we can break security of scheme (adv. A)
 - Then build "Reduction" (adv. B) breaking assumption

PART II THE PROVABLE SECURITY METHOD

- Core question: what does "secure" mean?
 - "Secure encryption" vs. "Secure signature scheme"
- > Say a scheme is secure against all known attacks
 - ... will it be secure against a yet unknown attack?
- > Step 1: Define your primitive (syntax)

Signature Scheme: algorithms (KGen, Sign, Vf)

- * $KGen(1^{\gamma})$ outputs (sk, pk)
- * Sign(sk,m) outputs S (prob.)
- * Vf(pk,m,S) outputs 0 or 1 (det.)

> Step 2: Define your adversary

Adversaries A can: know public information: γ, pk
get no message/signature pair
get list of message/signature pairs
submit arbitrary message to sign

> Step 3: Define the security condition

Adversary A can output fresh (m,S) which verifies, with non-negligible probability (as a function of γ)

Step 4: Propose a protocol

Instantiate the syntax given in Step 1. E.g. give specific algorithms for KGen, Sign, Vf.

> Step 5: Choose security assumptions

For each primitive in the protocol, choose assumptions

- Security Assumptions (e.g. IND-CCA encryption)
- Number Theoretical Assumptions (e.g. DDH, RSA)

> Step 6: Prove security

For each property you defined in steps 1-3:

- Assume there exists an adversary A breaking that security property with some probability ε
- Construct reduction B breaking underlying assumption with probability $f(\varepsilon)$

HOW REDUCTIONS WORK

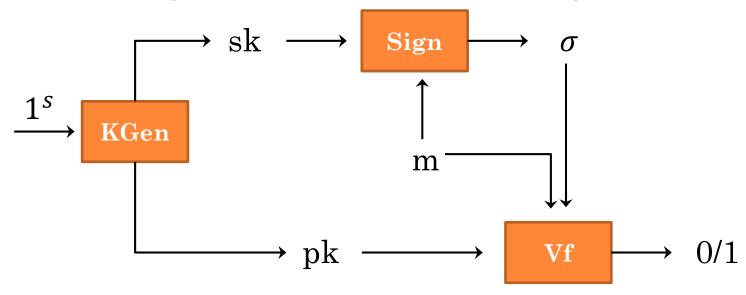
- > Security assumptions are baseline
- > Reasoning:
 - If our protocol/primitive is insecure, then the assumption is broken
 - But the assumption holds (by definition)
- Conclusion: The protocol cannot be insecure
- Caveat:
 - Say an assumption is broken (e.g. DDH easy to solve)
 - What does that say about our protocol?

We don't know!

PART III ASSUMPTIONS

WE NEED COMPUTATIONAL ASSUMPTIONS

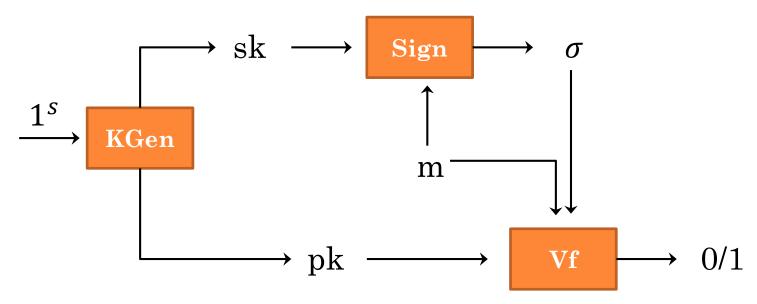
> Take our signature schemes (KGen, Sign, Vf)



Correctness: if parameters are well generated, well-signed signatures always verify.

WE NEED COMPUTATIONAL ASSUMPTIONS

> Take our signature schemes (KGen, Sign, Vf)

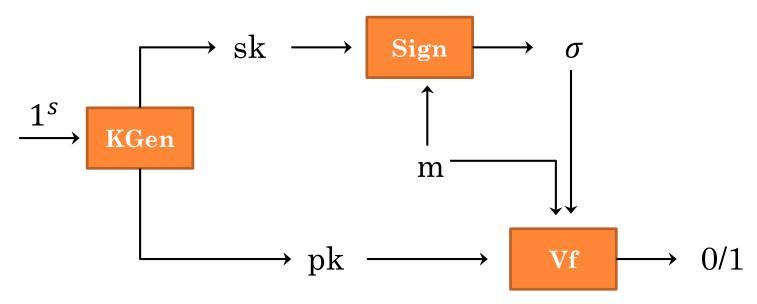


Unforgeability: no adversary can produce signature for a fresh message m*

But any A can guess sk with probability $\frac{1}{2|sk|}$

WE NEED COMPUTATIONAL ASSUMPTIONS

> Take our signature schemes (KGen, Sign, Vf)



Unforgeability: no adversary can produce signature for a fresh message m*

And any A can guess valid σ with probability $\frac{1}{2|\sigma|}$

SOME COMPUTATIONAL ASSUMPTIONS

- > Of the type: It is "hard" to compute *x* starting from *y*.
- > How hard?
 - Usually no proof that the assumption holds
 - Mostly measured with respect to "best attack"
 - Sometimes average-case, sometimes worst-case
- > Relation to other assumptions:
 - A 1 "→" A 2: break A 2 => break A 1
 - A 1 "←" A 2: break A 1 => break A 2
 - A 1 "⇔" A 2: both conditions hold

stronger

weaker

equivalent

Background:

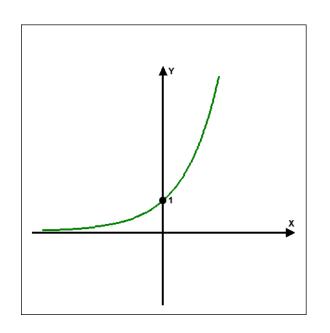
- Finite field \mathbf{F} , e.g. $\mathbf{Z}_{p}^{*} = \{1, 2, ..., p-1\}$ for prime p
- Multiplication, e.g. modulo p: 2(p-2) = 2p 4 = p 4
- Element g of prime order q | (p-1):

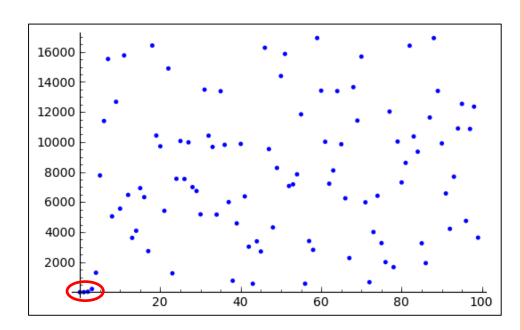
$$g^q = 1 \pmod{p}$$
 AND $g^m \neq 1 \pmod{p}$ $\forall m < q$

• Cyclic group $G = \langle g \rangle = \{1, g, g^2 \dots g^{q-1}\}$

> DLog problem:

- Pick $x \in_R \{1, ..., q\}$. Compute $X = g^x \pmod{p}$.
- Given (p, q, g, X) find x.
- Assumed hard.





> DLog problem:

- Pick $x \in_R \{1, ..., q\}$. Compute $X = g^x \pmod{p}$.
- Given (p, q, g, X) find x.
- Assumed hard.

- > DLog problem:
 - Pick $x \in_R \{1, \dots, q\}$. Compute $X = g^x \pmod{p}$.
 - Given (p, q, g, X) find x.
 - Assumed hard.
- > CDH problem:
 - Pick $x, y \in_R \{1, ..., q\}$. Compute $X = g^x \pmod{p}$; $Y = g^y \pmod{p}$.
 - Given (p, q, g, X, Y) find g^{xy} .

Just to remind you: $g^{xy} = X^y = Y^x \neq XY = g^{x+y}$

- \triangleright Solve D-LOG \Rightarrow Solve CDH
- ➤ Solve CDH ≠ Solve D-LOG

- > DLog problem:
 - Pick $x \in_R \{1, ..., q\}$. Compute $X = g^x \pmod{p}$.
 - Given (p, q, g, X) find x.
- > CDH problem:
 - Pick $x, y \in_R \{1, \dots, q\}$. Compute $X = g^x \pmod{p}$; $Y = g^y \pmod{p}$.
 - Given (p, q, g, X, Y) find g^{xy} .
- > DDH problem:
 - Pick $x, y, z \in_R \{1, ..., q\}$. Compute X, Y as above
 - Given (p, q, g, X, Y) distinguish g^{xy} from g^z .

HOW TO SOLVE THE DLOG PROBLEM

- ➤ In finite fields mod *p*:
 - Brute force (guess x) $\mathbf{\mathcal{C}}(q)$
 - Baby-step-giant-step: memory/computation tradeoff; $O(\sqrt{q})$
 - Pohlig-Hellman: small factors of q; $O(\log_p q (\log q + \sqrt{p}))$
 - Pollard-Rho (+PH): $O(\sqrt{p})$ for biggest factor p of q
 - NFS, Pollard Lambda, ...
 - Index Calculus: $\exp((\ln q)^{\frac{1}{3}}(\ln(\ln(q)))^{\frac{2}{3}})$
- Elliptic curves
 - Generic: best case is BSGS/Pollard-Rho
 - Some progress on Index-Calculus attacks recently

PARAMETER SIZE VS. SECURITY

ANSSI

Date	Sym.	RSA modulus	DLog Key	DLog Group	EC GF(p)	Hash
<2020	100	2048	200	2048	200	200
<2030	128	2048	200	2048	256	256
>2030	128	3072	200	3072	256	256

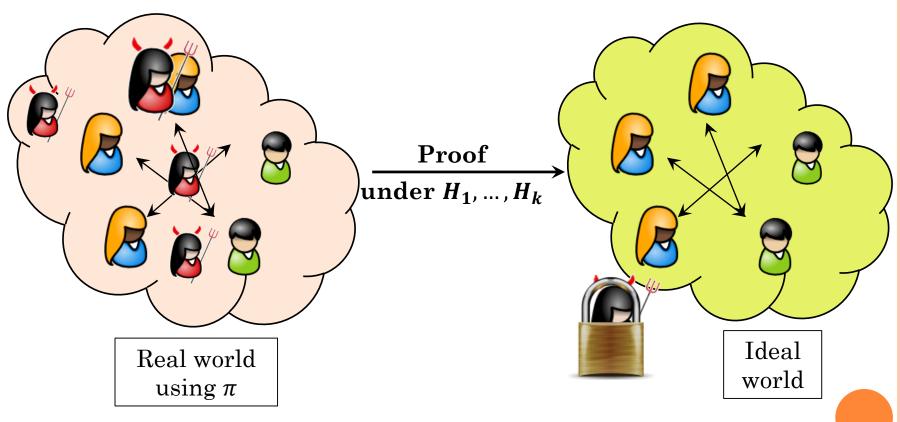
BSI

Date	Sym.	RSA modulus	DLog Key	DLog Group	EC GF(p)	Hash
2015	128	2048	224	2048	224	SHA-224+
2016	128	2048	256	2048	256	SHA-256+
<2021	128	3072	256	3072	256	SHA-256+

PART IV SECURITY MODELS

IDEAL PROVABLE SECURITY

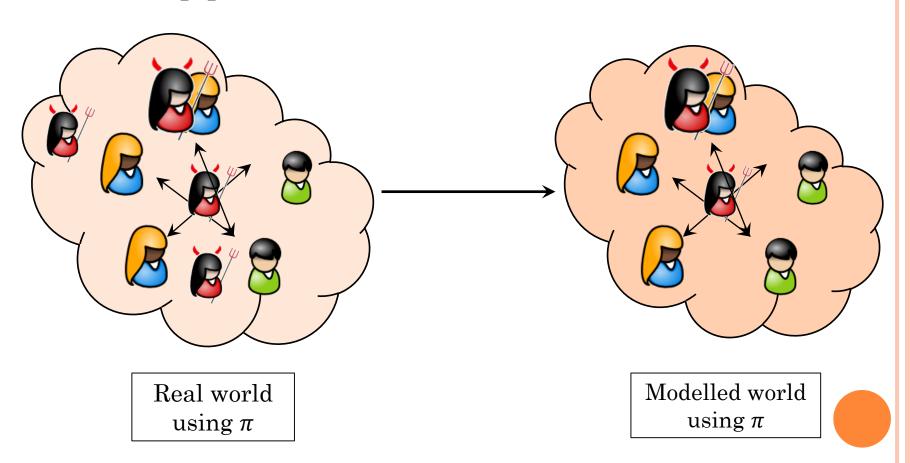
 \triangleright Given protocol π , assumptions H_1, \dots, H_k



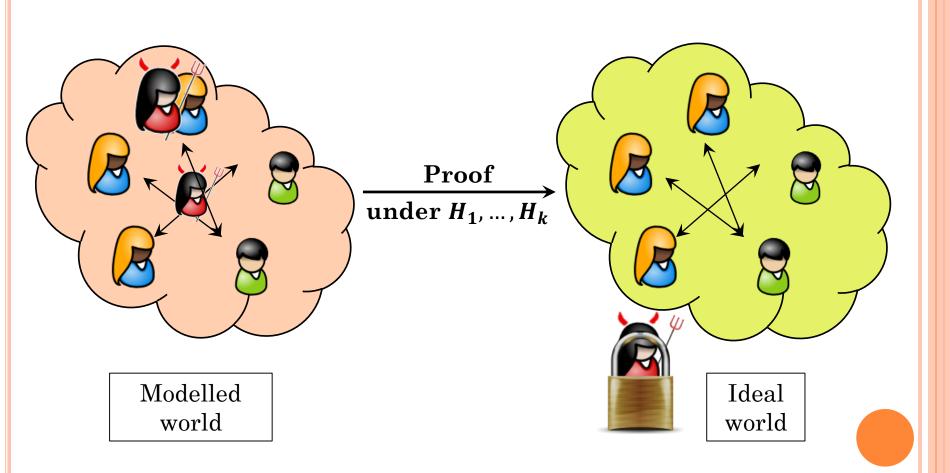
"Real World" is hard to describe mathematically

PROVABLE SECURITY

> Two-step process:



PROVABLE SECURITY



COMPONENTS OF SECURITY MODELS

- > Adversarial à-priori knowledge & computation:
 - Who is my adversary? (outsider, malicious party, etc.)
 - What does my adversary learn?
- Adversarial interactions (party-party, adversaryparty, adversary-adversary – sometimes)
 - What can my adversary learn
 - How can my adversary attack?
- Adversarial goal (forge signature, find key, distinguish Alice from Bob)
 - What does my adversary want to achieve?

GAME-BASED SECURITY

Participants

- Adversary A plays a game against a challenger C
 Adversary = attacker(s), has all public information
- Challenger = all honest parties, has public information and secret information

> Attack

- Oracles: *A* makes oracle queries to *C* to learn information
- Test: special query by A to C to which A responds sometimes followed by more oracle queries
- Win/Lose: a bit output by *C* at the end of the game

MEASURING ADVERSARIAL SUCCESS

- Winning a game; winning condition:
 - Depends on relation R on (*, < game >), with < game > =
 full game input (of honest parties and A)
 - Finally, A outputs x, wins if $(x, < \text{game} >) \in R$
- > Success probability:
 - What is the probability that A "wins" the game?
 - What is the probability measured over? (e.g. randomness in < game >, sometimes probability space for keys, etc.)
- Advantage of Adversary:
 - How much better is *A* than a trivial adversary?

ADVERSARIAL ADVANTAGE

- Forgery type games:
 - *A* has to output a string of a "longer" size
 - Best trivial attacks: guess the string or guess the key
 - Advantage:

```
Adv[A] = Prob[A wins the game]
```

- Distinguishability-type games:
 - *A* must distinguish between 2 things: left/right, real/random
 - Best trivial attacks: guess the bit (probability $\frac{1}{2}$)
 - Advantage (different ways of writing it):

```
Adv[A] = Prob[A wins the game] -\frac{1}{2}
Adv[A] = 2 | Prob[A wins the game] -\frac{1}{2} |
```

SECURITY MODELS – CONCLUSIONS

- > Requirements:
 - Realistic models: capture "reality" well, making proofs meaningful
 - Precise definitions: allow quantification/classification of attacks, performance comparisons for schemes, generic protocol-construction statements
 - Exact models: require subtlety and finesse in definitions, in order to formalize slight relaxations of standard definitions
- > Provable security is an art, balancing strong security requirements and security from minimal assumptions

EXAMPLE: PSEUDORANDOMNESS

- Perfect confidentiality exists:
 - Given by the One-Time Pad

$$c \coloneqq m \oplus k$$

XOR operation hides plaintext m entirely

- Disadvantages:
 - Need long keys (as long as plaintext)
 - Have to generate them at every encryption
- > Generating long randomness:
 - Use a pseudorandom generator!

PRGS

- Principle:
 - Start from small, truly random bitstring s, generate large pseudorandom strings

PRG: $\{0,1\}^m \to \{0,1\}^n$, for m \ll n

- Security (intuitive):
 - The adversary gets to see many output strings
 - In practice: PRGs used for randomness in encryption, signature schemes, key-exchange...
 - Adversary's goals (examples):
 - Predict next/former random number
 - o "Cancel out" randomness

SECURE PRGS

- Ideally PRG output should look "random"
- > Formally:
 - Allow A to see either truly random or PRG output
 - The adversary wins if it distinguishes them
- Security game:
 - Challenger picks seed of generator (A does not get it)
 - Challenger chooses a secret bit b
 - A can request random values
 - If b = 1 then Challenger returns $x \leftarrow \{0,1\}^n$
 - If b = 0 then Challenger returns $x \leftarrow PRG(s)$
 - A must output a guess bit d
 - Winning condition: A wins iff. d = b

THE SECURITY DEFINITION

$$s \leftarrow \{0,1\}^{m}$$

$$b \leftarrow \{0,1\}$$

$$d \leftarrow A^{Gen_b()}(m,n)$$

$$A \text{ wins iff } d = b$$

$Gen_b()$

- If b = 1, return $x \leftarrow \{0,1\}^n$
- Else, return $x \leftarrow PRG(s)$

 \triangleright Success probability is at least ½ . Why?

\triangleright (*k*, ϵ)-secure PRG:

A pseudorandom generator PRG is (k, ϵ) -secure if, and only if, an adversary making at most k queries to Gen_b wins w.p. at most $\frac{1}{2} + \epsilon$

PART V PROOFS OF SECURITY

PROOFS BY REDUCTION

- > Say we have a primitive P
- \triangleright We make assumptions S_1 , S_2
- **Goal**: prove that if S_1 , S_2 hold, then P is secure
- Statement: If there exists an adversary A against P, then there exists adversaries B_1 , B_2 against assumptions S_1 , S_2 , such that:

$$Adv(A) \le f(Adv(B_1), Adv(B_2))$$

Idea: if Adv(A) is significant, then so is at least one of $Adv(B_1)$, $Adv(B_2)$, breaking at least one assumption

REDUCING SECURITY TO HARD PROBLEM

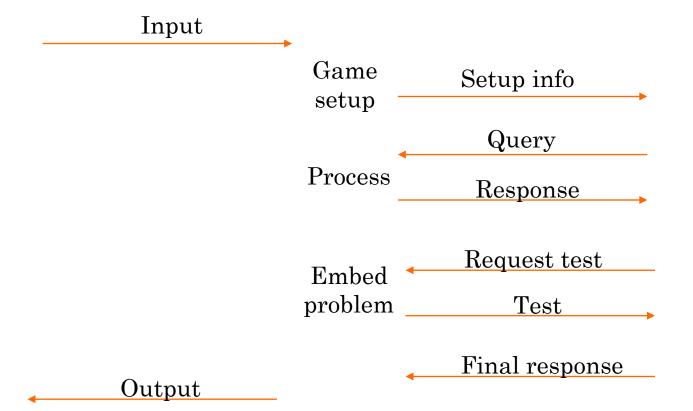
- Designed primitive has some game-based definition
 - A gets to query a challenger C
 - C gets to set up the system
 - There is a test phase
 - A will eventually answer the test and win/lose
- > Hard problem of the form: given Input, find Output
- \triangleright Strategy: use A to construct solver B for hard problem
 - \bullet B gets Input
 - B uses Input to run A on some instance of A's game
 - Finally, *B* receives *A*'s answer to its test
 - *B* processes *A*'s response into some Output

REDUCTIONS

Hard Problem

$$B = C_A$$

A



CONSTRUCTING A REDUCTION

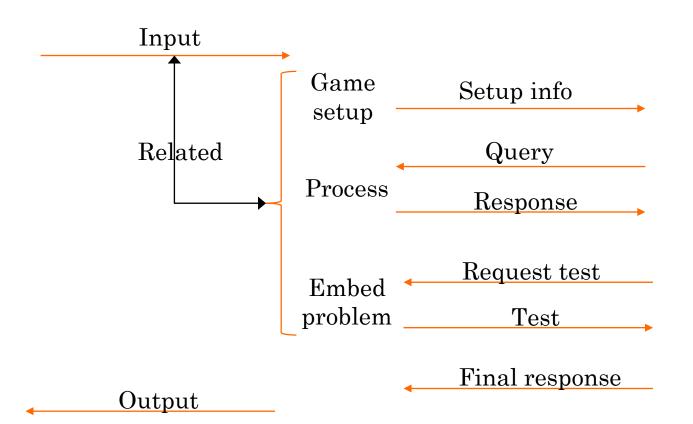
- ➤ *A* acts as a black-box algorithm (we don't know how it works in order to win its game)
- > B can send to A whatever it wants. However:
 - We want to bound B's winning probability on A's
 - But, A can only win if the game input is coherent
 - So *B* must simulate coherent input/output to *A*'s queries
 - Also, B must ultimately solve a hard problem
 - To produce correct output, *A*'s test response must give *B* the correct output with very high probability

REDUCTIONS

Hard Problem

$$B = C_A$$

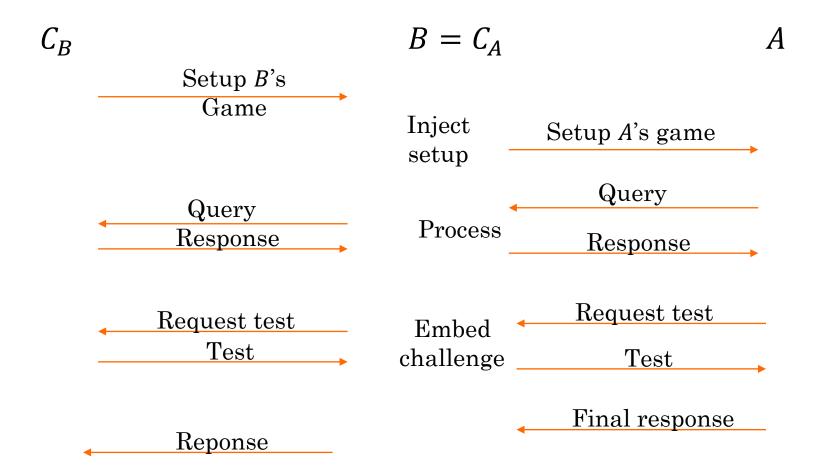
A



REDUCTION TO SECURITY OF COMPONENT

- Designed primitive has some game-based definition
 - A gets to query a challenger C
 - C gets to set up the system
 - There is a test phase
 - *A* will eventually answer the test and win/lose
- Component also has game-based definition
- Strategy: use A to construct solver B for hard problem
 - *B* gets Setup info and can query its challenger
 - *B* embeds its game in some instance of *A*'s game
 - Finally, *B* receives *A*'s answer to its test
 - *B* processes *A*'s response into a test response of its own

REDUCTIONS



EXAMPLE: BIGGER PRG

> Say we have a secure pseudorandom generator:

$$G_{\text{small}}: \{0,1\}^m \to \{0,1\}^n$$

> We want to construct a bigger PRG:

$$G_{\text{big}}: \{0,1\}^m \to \{0,1\}^{2n}$$

- \triangleright Instantiating G_{big} :
 - Setup: choose $s \leftarrow \{0,1\}^m$
 - Evaluation: $G_{\text{big}}(s) := G_{\text{small}}(s) \mid G_{\text{small}}(s)$

Claim: If G_{small} is secure, then so is G_{big}

SECURITY OF OUR DESIGN

Statement: For any $(k, \epsilon_{\text{big}})$ -adversary A against the security of G_{big} , there exists a $(2k, \epsilon_{\text{small}})$ -adversary B against the security of G_{small} such that:

$$\epsilon_{\rm big} \le \epsilon_{\rm small}$$

> Both adversaries play the same game:

$$s \leftarrow \{0,1\}^{m}$$

$$b \leftarrow \{0,1\}$$

$$d \leftarrow A^{Gen_b()}(m,n)$$

$$A \text{ wins iff } d = b$$

$Gen_b()$

- If b = 1, return $x \leftarrow \{0,1\}^n$
- Else, return $x \leftarrow PRG(s)$

CONSTRUCTING THE REDUCTION

$$C_B$$
 $S \stackrel{\$}{\leftarrow} \{0,1\}^m$
 $b \stackrel{\$}{\leftarrow} \{0,1\}$

Setup done

Query Gen_b

Query

If $b = 1$, return $x \stackrel{\$}{\leftarrow} \{0,1\}^n$
• Else, return $x \leftarrow G_{\text{small}}(s)$
 x_1
Query Gen_b
 x_2

Output d

Guess bit d

Analysis of the Reduction

- > Number of queries:
 - For each query, *A* expects a 2*n* response, whereas *A* only gets *n* bits from its challenger
 - Thus B needs twice as many queries as A
- \triangleright Accuracy of *B*'s simulation of C_A
 - In A's game if b = 1, A gets 2n truly random bits
 - And if b = 0, it expects $G_{\text{small}}(s) \mid G_{\text{small}}(s)$
 - B queries its own challenger for output
 - If C_B drew bit b = 1, it outputs n truly random bits
 - Else, it outputs $G_{\text{small}}(s)$
 - The simulation is perfect: Pr[B wins] = Pr[A wins]

EXERCISES

- Why does this proof fail if we have two secure PRGs: G_1 , G_2 : $\{0,1\}^m \rightarrow \{0,1\}^n$ and we construct $G: \{0,1\}^m \rightarrow \{0,1\}^{2n}$ as follows:
 - Setup: choose $s \leftarrow \{0,1\}^m$
 - Evaluation: $G(s) := G_1(s) \mid G_2(s)$
- \triangleright Will the proof work if $G(s) := G_1(s) \oplus G_2(s)$?