
THE WORLD OF TLS

Security, Attacks, TLS 1.3



HTTPS:// AND FTPS:// AND….

 Have you done any of the following today?

 E-shopping: Amazon, Ebay, Audible, …

 Checked your Email

 Visited a social networking site: Facebook, Twitter, …

 Used a secure FTP

 Used Voice over IP

 Used Google

 Used any URL strting with https:// and a green lock

Congratulations, you used TLS/SSL!



PART 1

ABOUT TLS/SSL 



WHAT TLS DOES

 Main goal:

 Confidentiality and Authenticity of communications

 Privacy of data and services exchanged

 Your searches on Google, or even the fact that you 

used Google Search rather than Google mail

 Guarantees still work if keys are compromised (PFS)

 Mostly Client you ↔ Server (Service Provider)

 How TLS does this:

 Key Exchange: yields keys for SEnc and MAC

 Record layer: use authenticated encryption with keys to 

secure communication

 Authentication: usually only server side (eases PKI)



THE CLIENT-SERVER SCENARIO

 Online shopping:

 You go to amazon. fr

 You choose what you want to buy

 Put it in your virtual shopping cart

 Log in with your user name and password

 Pay

 Wait for your delivery

 What actually happens:

 You type amazon. fr in your browser

 Your browser negotiates a TLS connection with Amazon

 You get to the website on https:// for secure browsing

 You authenticate to amazon on a secure link



A BIT OF HISTORY

 Started out as Secure Socket Layer (SSL) 

 Changed to Transport Layer Security (TLS) in 1999

 Developed by Netscape around 1995

 Main goal: secure communication over the Internet

 Secure communication over the Internet: https

 … but also: secure file sharing (ftp), secure emailing etc.

 Heavily standardised

 Some implementations:

 OpenSSL

 BoringSSL, mbedTLS

 s2n: TLS by Amazon 



BIT OF A BLACK SHEEP

 SSL 1.0: never released (too insecure for release)

 SSL 2.0: released in Feb. 1995 

 SSL 3.0: released in 1996, complete re-design from 2.0 

“contained a number of security flaws”

 TLS 1.0: “no dramatic changes”, but “more secure”

backward compatible: can relax to SSL 3.0

 TLS 1.1: some protection against CBC-mode attacks:

explicit IV, better padding

 TLS 1.2: problems with MD5, more recently RC4

renegotiation, export ciphersuites, implem. faults



BACKGROUND: TLS/SSL

Key exchange

Record layer

SEnc & MAC

 Intuition:

 If keys are “good”, they should secure Record layer

 Q1: What is a “good” key?

 Q2: How do we encrypt and authenticate?



TLS AS A COMMUNICATION LAYER
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THE TLS (1.2) HANDSHAKE (AKE)

Pick 𝑁𝐶 Pick 𝑁𝑆, 𝐾𝐸𝑆

𝑁𝑆, cipher, ext

𝑁𝐶, ciphers, ext.

Pick 𝐾𝐸𝐶

Compute 𝑝𝑚𝑘

𝑚𝑠𝑘 ← 𝐻𝑀𝐴𝐶 (𝑝𝑚𝑘; 𝑁𝐶|𝑁𝑆)

𝐾𝐶|𝐾𝑆 ← 𝐻𝑀𝐴𝐶 (𝑚𝑠𝑘;𝑁𝐶|𝑁𝑆)

𝐹𝑖𝑛𝐶 ← 𝐻𝑀𝐴𝐶 𝑚𝑠𝑘; 1 𝜏) 𝐾𝐸𝐶 , {𝐹𝑖𝑛𝐶}𝐾𝐶
Compute 𝑝𝑚𝑘,𝑚𝑠𝑘

𝐹𝑖𝑛𝑆 ← 𝐻𝑀𝐴𝐶 𝑚𝑠𝑘; 2 𝜏)

Compute 𝐾𝐶|𝐾𝑆
{𝐹𝑖𝑛𝑆}𝐾𝑆 check 𝐹𝑖𝑛𝐶

check 𝐹𝑖𝑛𝑆

𝑁𝑆, Cert(𝐾𝐸𝑆), 𝐾𝐸𝑆

check Cert(𝐾𝐸𝑆)



THE THREE MODES

Pick 𝑁𝐶 Pick 𝑁𝑆, 𝐾𝐸𝑆

𝑁𝑆, Cert(𝐾𝐸𝑆), 𝐾𝐸𝑆

𝑁𝐶

Pick 𝐾𝐸𝐶

Choose 𝑝𝑚𝑘 ∈𝑅 {0,1}8∗48

 TLS-RSA (most used):

RSA public 

encryption key

check Cert(𝐾𝐸𝑆)

𝐾𝐸𝐶 ≔ 𝑅𝑆𝐴𝐾𝐸𝑆(𝑝𝑚𝑘)

𝐾𝐸𝐶
Decrypt with sk



THE THREE MODES

Pick 𝑁𝐶 Pick 𝑁𝑆, 𝐾𝐸𝑆

𝑁𝑆, Cert(𝐾𝐸𝑆), 𝐾𝐸𝑆

𝑁𝐶

Pick 𝐾𝐸𝐶

Choose 𝑘𝑒𝑐 ∈𝑅 {0, … 𝑞 − 1}

 TLS-DH (second best):

DH public key 

𝐾𝐸𝑆 = 𝑔𝑘𝑒𝑠 (mod 𝑝)

check Cert(𝐾𝐸𝑆)

𝐾𝐸𝐶 = 𝑔𝑘𝑒𝑐 (mod 𝑝) 𝐾𝐸𝐶

Set 𝑝𝑚𝑘 = 𝐾𝐸𝑆
𝑘𝑒𝑐 (mod 𝑝) 𝑝𝑚𝑘 = 𝐾𝐸𝐶

𝑘𝑒𝑠 (mod 𝑝)



THE THREE MODES

Pick 𝑁𝐶 Pick 𝑁𝑆, 𝐾𝐸𝑆

𝑁𝑆, 𝐆, Cert(𝐾𝐸𝑆), 𝐾𝐸𝑆

𝑁𝐶

Choose 𝑘𝑒𝑐 ∈𝑅 {0, … 𝑞 − 1}

 TLS-DHE (ephemeral DH):

Fresh DH public key 

and matching group

Key signs group, PK

check Cert(𝐾𝐸𝑆)

𝐾𝐸𝐶 = 𝑔𝑘𝑒𝑐 (mod 𝑝) 𝐾𝐸𝐶

Set 𝑝𝑚𝑘 = 𝐾𝐸𝑆
𝑘𝑒𝑐 (mod 𝑝)

𝑝𝑚𝑘 = 𝐾𝐸𝐶
𝑘𝑒𝑠 (mod 𝑝)



KEY DERIVATION AND RENEGOTIATION

𝑁𝑆, 𝑠𝐼𝐷, {𝐹𝑖𝑛𝑆}𝐾𝑆

𝑁𝐶, 𝑠𝐼𝐷

< 𝐹𝑖𝑛𝐶 >𝐾𝐶

 Runs of TLS are “sessions” and have session IDs

 If client has seen server before, reuse key material 
(𝑚𝑠𝑘)

 Use 𝑠𝐼𝐷 instead of 𝑁𝐶 and 𝑁𝑆

𝐾𝐶|𝐾𝑆 ← 𝑃𝑅𝐹 (𝑚𝑠𝑘𝑠𝐼𝐷; 𝑁𝐶|𝑁𝑆)

𝐹𝑖𝑛𝐶 ← 𝑃𝑅𝐹 𝑚𝑠𝑘𝑠𝐼𝐷; 1 𝜏)



TLS HANDSHAKE SUMMARY

 Session freshness

 Nonces 𝑁𝐶 , 𝑁𝑆 involved in key derivation

 Prevent replay attacks (that enforce same keys)

 Server authentication

 Certificate ensures only server shares key with client

 Unilateral: anyone can exchange keys with server

 Key confirmation

 Finished messages: authenticated encryption with 

session keys, of a fixed message

 Both parties are sure they computed the same keys

 Forward secrecy : only in DHE mode

𝑚𝑠𝑘 ← 𝑃𝑅𝐹 (𝑝𝑚𝑘; 𝑁𝐶|𝑁𝑆)



SOME PROBLEMS

 Configuration parameters not part of key

 Compatibility of ciphers and size not verified 

(enabling the use of export cipher suites)

Pick 𝑁𝐶 Pick 𝑁𝑆, 𝐾𝐸𝑆

𝑁𝑆, cipher, ext

𝑁𝐶, ciphers, ext.

Pick 𝐾𝐸𝐶

𝑁𝑆, Cert(𝐾𝐸𝑆), 𝐾𝐸𝑆

𝐾𝐶|𝐾𝑆 ← 𝑃𝑅𝐹 (𝑚𝑠𝑘;𝑁𝐶|𝑁𝑆)



CIPHER SUITES FOR TLS 1.2

 Example:

TLS_RSA_WITH_AES_128_CBC_SHA = (0x00, 0x2F)

TLS_DHE_RSA_WITH_AES_256_CBC_SHA = (0x00, 0x39)

Key-exchange 

mode
Block cipher 

mode H-MAC

Signature



RECORD LAYER TREATMENT

Plaintext

Plaintext MAC Plaintext MAC

Plaintext MAC Pad

MAC then Encrypt MAC, Pad, then Encrypt AE record

MAC

Stream

cipher

MAC

Pad

Encrypt 

(CBC mode)

AEAD

Source: [Lev16]



PART 2

PROVABLE SECURITY AND ATTACKS



WHAT IS A GOOD KEY?

 Bellare-Rogaway security for key exchange [BR93]:

Test

Real or 

Random 

keys



BR ATTACKERS

 Active Man-in-the-Middle:

 Can observe communication

 Can instantiate communication with any party, in 

separate session

 Can reveal session keys

 Can corrupt parties to learn long-term keys

 And yet, Adv. cannot distinguish specific session key 

from random without revealing/ corrupting

 Forward secrecy:

 Even past keys of corrupted parties look random



WHY AKE SECURITY

 AKE security: 

 Say session key is indistinguishable from random

 Whatever you use that key for will be as secure as it is if a 

random key is used

 Secure symmetric encryption:

 The key is picked at random from a key space,  by the Key 

Generation algorithm

 The adversary is never given this key

 IND-CPA security: the adversary cannot learn even one  bit 

of the encrypted plaintext

 However, the guarantee holds only if key looks random



IS TLS BR-SECURE?

Pick 𝑁𝐶 Pick 𝑁𝑆, 𝐾𝐸𝑆

𝑁𝑆, cipher, ext

𝑁𝐶, ciphers, ext.

Pick 𝐾𝐸𝐶

Compute 𝑝𝑚𝑘

𝑚𝑠𝑘 ← 𝐻𝑀𝐴𝐶 (𝑝𝑚𝑘; 𝑁𝐶|𝑁𝑆)

𝐾𝐶|𝐾𝑆 ← 𝐻𝑀𝐴𝐶 (𝑚𝑠𝑘;𝑁𝐶|𝑁𝑆)

𝐹𝑖𝑛𝐶 ← 𝐻𝑀𝐴𝐶 𝑚𝑠𝑘; 1 𝜏) 𝐾𝐸𝐶 , {𝐹𝑖𝑛𝐶}𝐾𝐶
Compute 𝑝𝑚𝑘,𝑚𝑠𝑘

𝐹𝑖𝑛𝑆 ← 𝐻𝑀𝐴𝐶 𝑚𝑠𝑘; 2 𝜏)

Compute 𝐾𝐶|𝐾𝑆
{𝐹𝑖𝑛𝑆}𝐾𝑆 check 𝐹𝑖𝑛𝐶

check 𝐹𝑖𝑛𝑆

𝑁𝑆, Cert(𝐾𝐸𝑆), 𝐾𝐸𝑆

check Cert(𝐾𝐸𝑆)



TLS AND BR SECURITY

 TLS combines handshake with auth. encryption

 TLS is not secure because of Finished messages

 Check Real/Random by simulating Finished messages

 If the key is confirmed, it’s real; else, it’s random

 ACCE security:

 Introduced by Jager et al. [JKSS, Crypto 2012]

 2 guarantees: 

 unilateral or mutual authentication

 Channel security (the computed key is safe to use with AE)

 No guarantees for other uses (e.g. for authentication)



(S)ACCE SECURITY OF TLS

 Breakthrough in TLS Security

 Krawczyk, Paterson, Wee (2013): TLS 1.2 is secure

 Bhargavan et al. (2014): TLS 1.2 is secure even with 

session resumption and changing ciphersuites

 Kohlweiss et al. (2014): TLS 1.2 is secure even in 

composition with other protocols

 Guarantee requires: 

 MSK expansion from KE𝐶 , KE𝑆 is truly random

 Key expansion function is PRF

 Gap Diffie-Hellman problem is hard

 Record-layer primitives are secure



TLS & FORWARD SECRECY

 Forward secrecy:

 Adversary watches some sessions, records transcripts

 Adversary corrupts server to get key

 TLS-RSA mode:

 Corruption yields long-term RSA secret-key

 Adversary can decrypt all past 𝑝𝑚𝑘 encryptions

 TLS-DH mode:

 Corruption yields discrete log of static DH share

 Adversary can calculate past 𝑝𝑚𝑘 values

 TLS-DHE mode: 

 Corruption yields long-term signature secret key

 Adversary can sign, but cannot retrieve past DLogs



RECORD-LAYER SECURITY

 Cipher Suites:

 Chosen by client when sending nonce

 Define: key-exchange, sym. encryption, MAC, PRF  

 Choice of block or stream ciphers, hash functions, etc.

 Provable security:

 If you have good keys, IND-CPA-secure 
authenticated encryption, then this creates a secure 
channel

 Problem 1: we don’t really know which cipher suites 
are IND-CPA secure

 Problem 2: security models feature single-block msgs; 
real world msgs are multi-block and padded



PROBLEMS WITH CBC-MODE

 Why we like CBC mode:

 Efficient in practice: can decrypt a lot in constant 

memory and linear time

 Just as good as ECB for efficiency, better security

 Some limits:

 Problems with choice of IV

 CBC-MAC has problems with unforgeability

 More serious: attack by Vaudenay



VAUDENAY’S ATTACK

 Works for specific kind of padding:

 Consider block length 𝑏 in bytes

 Message 𝑚 that has length (in bytes) not a multiple 
of 𝑏

 Pad with 𝑛 bytes, each equal to 𝑛 : 1, 22, 333, etc.

 Padded message: [𝑥1, … , 𝑥𝑁], each 𝑥𝑖 a full block

 Encrypt: 

𝑦1 = 𝐶 𝐼𝑉 𝑋𝑂𝑅 𝑥𝑖 ;  and 𝑦𝑖 = 𝐶(𝑦𝑖−1 𝑋𝑂𝑅 𝑥𝑖)

 Uses error messages as oracles:

 If padding is incorrect, receiving party usually 
complains

 Change ciphertext 𝑦 and watch if padding still ok



BASIC ATTACK

 First step: find last word of 𝑦

 Why this works:

 If 𝑂 𝑟 𝑦 = 1 then padding checks for decrypted

ciphertext

 Which means, padding is correct for 𝐶−1 𝑦 𝑋𝑂𝑅 𝑟

 Repeat to get last block of 𝑦 , then to get 𝑦



ERRORS THAT KILL (OPENSSH)

 Encrypt-then-MAC is bad: Albrecht et al.

Sequence

number

Packet

length

Padding

length

Payload Padding

Encrypt

MAC

Ciphertext MAC



PLAINTEXT RECOVERY

 Idea:

 Forget about the length being a length field

 Imagine you wanted to decrypt a ciphertext

 Start with one block of this ciphertext (which you 

want to decrypt), and send it as the first part of a 

new ciphertext

 Wait and see

 If no termination, then the packet passed the length 

check

 We learn 14 bits of plaintext

 Repeat this to get 32 bits, then more



HISTORY OF TLS ATTACKS

 Renegotiation attack vs >SSL 3.0: plaintext injection

Ideal Patch: kill renegotiation/generate more entropy

 Version rollback attacks: use older, weaker version/cipher

Real Patch: include previous session history

Ideal Patch: kill backward compatibility/weak ciphers

Real Patch: ??? (not an important/realistic attack)

 BEAST: browser exploits of CBC vulnerabilities

Ideal Patch: kill CBC mode/ kill < TLS 1.2

Real Patch: fixed in TLS 1.1, but even if client has TLS >1.1,

weak servers can force it to TLS 1.0.   

Extra Patch: discouraged CBC mode

encouraged RC4…



MORE ATTACKS ON TLS

 CRIME/BREACH: exploit compression characteristics

Ideal Patch: kill data compression

Real Patch: can kill some compression in TLS/SPDY headers;

cannot kill HTTP compression (against BREACH)

 Timing attacks/Lucky 13: exploit padding problems

Ideal Patch: kill CBC mode

Real Patch: encourage RC4 instead of CBC mode

TLS 1.2 does offer one good ciphersuite: AES-GCM

 POODLE: downgrade to SSL 3.0 and exploit away

Ideal Patch: kill backward compatibility

Real Patch: close our eyes and hope it goes away?



AND EVEN MORE ATTACKS

 RC4 attacks: RC4 output biased – NOT pseudorandom

Attack specifics: 2014 – use many encryptions (234) and lots of

generated traffic to do something à la

BREACH/CRIME (on cookies)

2015 – use less encryptions (226) on pass-

words with100 tries before lockout.

Password recovery rate: 50% for pw-

length 6 for BasicAuth (Chrome)
Ideal Patch: kill RC4

Real Patch: RFC 7465 prohibits RC4 cipher suites. 

Real Deployment: 30% of SSL/TLS traffic still uses RC41

74.5% of sites allow RC4 negotiation2

few sites deploy TLS 1.2, which means

alternatives are just as bad…

1 ICSI Certificate Notary project; 2 SSL Pulse 



DOES IT EVER STOP?

 Heartbleed: does not affect SSL/TLS, rather OpenSSL

Attack strategy: read memory of users with problematic ver-

sions of OpenSSL, essentially learning their

long-term data

Patch: do not use OpenSSL 1.0.1. to 1.0.1f.

 3Shake: S1
* forces same MSK in S1

* - A and S1
* - S2

Attack strategy: use same PMK material in two sessions, 

then use session resumption (no certificates!)

Ideal Patch: kill renegotiation and finite fields; use ECDHE

Real Patch: not really all that much…

 FREAK: force connection on weak parameters 

Ideal Patch: kill backward compatibility

Real Patch: fix OpenSSL, preserve backward compatibility



A RECENT BUG: LOGJAM

 Export cipher suites: date back to 90s, have small primes

Can break DLog on those groups easily, thus forge connection

Source: 

[ABD+15]



WHY LOGJAM WORKS

 Export ciphers still exist
 Originally for exporting cipher suites outside the US

 No longer really needed, but dormant in implementation

 They look innocuous, like regular DH parameters

 Solving DLog on 512-bit fields

 Usually servers use the same primes over and over 
again: break it once, you will know it next time

 Generally takes longer than usual timeout of 
sessions…

 … but we can feed the server nonsense messages to 
make it wait longer

 Bhargavan et al.: 70 seconds to break DLog



ANOTHER BUG: 3SHAKE [BDF+14]

 What if the attacker is a legitimate server?

 This server has a legitimate certificate

 Its goal is to see information meant for other servers

 Strategy: first synch. keys, then relay

Client ADV Server

𝑁𝑆, Cert 𝐾𝐸𝐴𝐷𝑉
𝑝𝑘𝐴𝐷𝑉

𝑁𝐶

𝑁𝑆, Cert 𝐾𝐸𝑆
𝑝𝑘𝑆

𝑁𝐶

𝑝𝑚𝑘 ∈𝑅 {0,1}8∗48

𝐾𝐸𝐶 ≔ 𝑅𝑆𝐴𝐾𝐸𝐴𝐷𝑉(𝑝𝑚𝑘)

𝐾𝐸𝐶 Decrypt
𝐾𝐸𝐴𝐷𝑉 ≔ 𝑅𝑆𝐴𝐾𝐸𝑆(𝑝𝑚𝑘)

𝐾𝐸𝐴𝐷𝑉

𝐾𝐶 , 𝐾𝐴𝐷𝑉 𝐾𝐶 , 𝐾𝐴𝐷𝑉 𝐾𝐶 , 𝐾𝐴𝐷𝑉



ANOTHER BUG: 3SHAKE [BDF+14]

 Now suppose the three parties share keys

 Adv now wants to access C’s Amazon’s account

 Amazon requires user-name + password

Client ADV Server

𝑁𝑆, Cert 𝐾𝐸𝐴𝐷𝑉
𝑝𝑘𝐴𝐷𝑉

𝑁𝐶

𝑁𝑆, Cert 𝐾𝐸𝑆
𝑝𝑘𝑆

𝑁𝐶

𝐾𝐸𝐶 𝐾𝐸𝐴𝐷𝑉

𝐾𝐶 , 𝐾𝐴𝐷𝑉 𝐾𝐶 , 𝐾𝐴𝐷𝑉 𝐾𝐶 , 𝐾𝐴𝐷𝑉{𝐶𝐴𝐹𝑖𝑛} {𝐴𝑆𝐹𝑖𝑛}

{𝑆𝐴𝐹𝑖𝑛}{𝐴𝐶𝐹𝑖𝑛}

Login req.Login req.

Auth. data Auth. data



BUT… WASN’T TLS PROVABLY SECURE?

 Security statement equivalent to:

 In the ROM (or with weird assumptions), given:

• A secure certification scheme (PKI)

• A collision-resistant hash function

• A PRF that is indistinguishable from random

• A Strongly-unforgeable HMAC

• Either CBC-mode block cipher that is a super PRP; or a 

stream cipher with PR output

 Then: TLS-RSA, TLS-DH, TLS-DHE secure 

How does that fit in with attacks?



GAP MODEL/REALITY

 De-facto security model:

 Reductions

• 1 server, perfect protocol implementation:

Rules out 3Shake, Heartbleed, Padding attacks

• Does not capture changing ciphersuites/renegotiation

• Assuming CBC-mode block cipher that is a super PRP… 

• Assuming stream cipher with PR output…

Rules out FREAK, renegotiation, version rollback…

Rules out cookie problems: BREACH/CRIME…

… which is not true for TLS…

… DEFINITELY not true for RC 4…

Close the gap or change the protocol



PART 3

TLS 1.3 



BASICS OF TLS 1.3

 TLS 1.3 philosophy:

 Modular protocol design

 Preserves features such as key-confirmation

 … but guarantees AKE security (is composable)

 Few, good ciphersuites

 As much privacy as Tor (privacy vs. passive attacks)

 Several modes of operation:

 Full handshake in DHE mode

 Pre-Shared Key

 PSK + DHE

 0-RTT



FULL HANDSHAKE STRUCTURE [V13]

 Several stages, one stage per key:

Client Server

plaintext messages

Stage 1

Compute tkℎ𝑠 Compute tkℎ𝑠
messages encrypted

using tkℎ𝑠 Stage 2

Compute tk𝑎𝑝𝑝 Compute tk𝑎𝑝𝑝

Compute R.MS Compute R.MS

Stage 3

Compute E.MS Compute E.MS

Stage 4

encrypted psk𝐼𝐷
using tk𝑎𝑝𝑝



STAGE 1 OF FULL HANDSHAKE

 Stage 1: handshake keys

Client Server

Stage 1

Pick 𝑁𝐶 32-bytes long

Pick 𝐆1, 𝐆2…𝐆𝑛
x1, x2…x𝑛

Set 𝐊𝐄𝐶,𝑖 = (𝐆𝑖 , 𝑔𝑖
𝑥𝑖)

𝑁𝐶, 𝐊𝐄𝐶,1…𝐊𝐄𝐶,𝑛, ext

Pick 𝑁𝑆, pick one 𝐆𝑗

Pick 𝑦, set 𝐾𝐸𝑆 = 𝑔𝑗
𝑦

𝑁𝑆, 𝐆𝑗 , KE𝑆, ext
Do: ES = KE𝑆

𝑥𝑗

Do: ES = KE𝐶,𝑗
𝑦

H1 = 𝐻(𝑁𝐶 …KE𝑆, 𝑒𝑥𝑡)

𝑥ES = HKDF. Ext(0, ES)

tkℎ𝑠 = HKDF. Exp(xES, 𝑙1| H1)



CLIENT & SERVER HELLO

 TLS 1.2

 Client Hello message:

 Version, random, sID, ciphersuites, compression, extensions

 Server Hello message:

 Version, random, sID, ciphersuite, compression, extensions

 In TLS-DHE, server chooses (EC)DHE group

 TLS 1.3

 Client Hello: 

 Includes list of groups and key-shares for all those groups

 Server Hello:

 Chooses one group, generates key share



THE HKDF FUNCTIONS [RFC 5869]

 2 functions:

 Extract takes a “salt” and an “input key material”

 Its goal is to extract entropy

 Expand takes a “secret”, a context, and a length

 Its goal is to return PR keys of that length

Extract

salt

IKM

short key

𝑥ES = HKDF. Ext(0, ES)

salt

IKM

Expandsecret

info

L

longer key

tkℎ𝑠 = HKDF. Exp(xES, 𝑙1| H1)

secret info



STAGE 2 OF FULL HANDSHAKE

Client Servertkℎ𝑠 = HKDF. Exp(xES, 𝑙1| H1)

Do: SS = KE𝑆
𝑥 Do: SS = KE𝐶

𝑦

{Cert}tkℎ𝑠

Do: H2 = 𝐻(𝑁𝐶 …Cert)
Set C. Vf = Sign(skS, H2){C. Vf}tkℎ𝑠

Verify C. Vf

Verify Cert

𝑥SS = HKDF. Ext(0, SS)

FS = HKDF. Exp(xSS, 𝑙2| H3)

Do: H3 = 𝐻(𝑁𝐶 …C. Vf)

SFin = HMAC(FS, 𝑙3|H3){SFin}tkℎ𝑠
Verify SFin

CFin = HMAC(FS, 𝑙4|H4)
Do: H4 = 𝐻(𝑁𝐶 …SFin)

{CFin}tkℎ𝑠

𝑚ES = HKDF. Exp(𝑥ES, 𝑙5|H3) 𝑚SS = HKDF. Exp(𝑥ES, 𝑙6|H3)
MS = HKDF. Ext(𝑚ES,𝑚SS)

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

H5 = 𝐻(𝑁𝐶 …CFin)

Stage 2

Verify CFin



KEY SCHEDULE UP TO STAGE 2

ES

0

Ext xES

ExpH1|l1 tkℎ𝑠

Exp mES

SS

0

Ext xSS

Exp FS

Exp mSS

Ext MS

𝐻(𝑁𝐶 …KE𝑆, 𝑒𝑥𝑡) =

𝐻(𝑁𝐶 …Cert) =

𝐻(𝑁𝐶 …C. Vf)

H2|l2

H3|l5

H3|l6

H5|l7

Exp

𝐻(𝑁𝐶 …CFin)

tk𝑎𝑝𝑝



ABOUT OUR KEYS

 Stage 1: tkℎ𝑠 computed from ES = 𝑔𝑥⋅𝑦 and hello hash

 but not authenticated by end of Stage 1

 Stage 2: tk𝑎𝑝𝑝 computed from ES = 𝑔𝑥⋅𝑦 and SS = ES

 Step I: authenticate tkℎ𝑠 -- indirect authentication of ES

 Step II: obtain FS from SS via Extract + Expand

 With a different Hash + label than tkℎ𝑠 from ES

 FS, tkℎ𝑠 independent, but confirming same secret

 Step III: obtain 𝑚ES,𝑚SS from 𝑥ES = 𝑥SS

 Hash used in both cases is identical

 But label is different, making 𝑚ES,𝑚SS independent

 Step IV: get master secret MS from 𝑚ES, 𝑚SS

 Step V: get tk𝑎𝑝𝑝 from MS with yet another hash & label



STAGES 3 AND 4

Client Server

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

RMS = HKDF. Exp(MS, 𝑙8|H5)

H5 = 𝐻(𝑁𝐶 …CFin)

Stage 3

EMS = HKDF. Exp(MS, 𝑙8|H5) Stage 4

{psk𝐼𝐷}tk𝑎𝑝𝑝 Pick psk𝐼𝐷

Used in session resumption as SS

Expanded to other keys



MORE KEY SCHEDULING

mES

mSS

Ext MS

H5|l7

Exp

𝐻(𝑁𝐶 …CFin)

tk𝑎𝑝𝑝

Exp

Exp

RMS

EMS

H5|l8

H5|l9

𝐻(𝑁𝐶 …CFin)



RESUMPTION AND EXPORT SECRETS

 The resumption secret RMS

 Result of expanding MS with new label, session hash

 The RMS is maintained, associated with psk𝑖𝑑
 If prompted with psk𝑖𝑑, parties will use RMS as SS

 We will see resumption later

 The export secret EMS

 Will be used to yield further (independent) keys

 Export keys: used for other applications, like:

 Personal authentication

 Encryption in different applications



RECORD LAYER PRIMITIVES

 One block cipher, one stream cipher only

 AES – GCM (McGrew, Viega)

 Allows not only encrypt + MAC, but also includes EA

 Couter-mode encryption

 ChaCha20-Poly1305

 ChaCha20: stream cipher based on Salsa20 [Bernstein]

 Poly1305: AES-based MAC (Nir, Langley, RFC 7539) 



AES-GCM

Source:

[AES.GCM]



PART 4

THE SECURITY OF TLS 1.3 



THE SECURITY OF TLS 1.3 (FULL)

Client Server

Stage 1

Pick 𝑁𝐶

Pick 𝐆1, 𝐆2…𝐆𝑛
x1, x2…x𝑛

Set 𝐊𝐄𝐶,𝑖 = (𝐆𝑖 , 𝑔𝑖
𝑥𝑖)

𝑁𝐶, 𝐊𝐄𝐶,1…𝐊𝐄𝐶,𝑛, ext

Pick 𝑁𝑆, pick one 𝐆𝑗

Pick 𝑦, set 𝐾𝐸𝑆 = 𝑔𝑗
𝑦

𝑁𝑆, 𝐆𝑗 , KE𝑆, ext
Do: ES = KE𝑆

𝑥𝑗

Do: ES = KE𝐶,𝑗
𝑦

H1 = 𝐻(𝑁𝐶 …KE𝑆, 𝑒𝑥𝑡)

𝑥ES = HKDF. Ext(0, ES)

tkℎ𝑠 = HKDF. Exp(xES, 𝑙1| H1)

List is standardized (only safe groups)



THE SECURITY OF TLS 1.3 (FULL)

Client Server

Stage 1

Pick 𝑁𝐶

Pick 𝐆1, 𝐆2…𝐆𝑛
x1, x2…x𝑛

Set 𝐊𝐄𝐶,𝑖 = (𝐆𝑖 , 𝑔𝑖
𝑥𝑖)

𝑁𝐶, 𝐊𝐄𝐶,1…𝐊𝐄𝐶,𝑛, ext

Pick 𝑁𝑆, pick one 𝐆𝑗

Pick 𝑦, set 𝐾𝐸𝑆 = 𝑔𝑗
𝑦

𝑁𝑆, 𝐆𝑗 , KE𝑆, ext
Do: ES = KE𝑆

𝑥𝑗

Do: ES = KE𝐶,𝑗
𝑦

H1 = 𝐻(𝑁𝐶 …KE𝑆, 𝑒𝑥𝑡)

𝑥ES = HKDF. Ext(0, ES)

tkℎ𝑠 = HKDF. Exp(xES, 𝑙1| H1)
DH exchange



THE SECURITY OF TLS 1.3 (FULL)

Client Server

Stage 1

Pick 𝑁𝐶

Pick 𝐆1, 𝐆2…𝐆𝑛
x1, x2…x𝑛

Set 𝐊𝐄𝐶,𝑖 = (𝐆𝑖 , 𝑔𝑖
𝑥𝑖)

𝑁𝐶, 𝐊𝐄𝐶,1…𝐊𝐄𝐶,𝑛, ext

Pick 𝑁𝑆, pick one 𝐆𝑗

Pick 𝑦, set 𝐾𝐸𝑆 = 𝑔𝑗
𝑦

𝑁𝑆, 𝐆𝑗 , KE𝑆, ext
Do: ES = KE𝑆

𝑥𝑗

Do: ES = KE𝐶,𝑗
𝑦

H1 = 𝐻(𝑁𝐶 …KE𝑆, 𝑒𝑥𝑡)

𝑥ES = HKDF. Ext(0, ES)

tkℎ𝑠 = HKDF. Exp(xES, 𝑙1| H1)

Both hello messages in this hash



THE SECURITY OF TLS 1.3 (FULL)

Client Server

Stage 1

Pick 𝑁𝐶

Pick 𝐆1, 𝐆2…𝐆𝑛
x1, x2…x𝑛

Set 𝐊𝐄𝐶,𝑖 = (𝐆𝑖 , 𝑔𝑖
𝑥𝑖)

𝑁𝐶, 𝐊𝐄𝐶,1…𝐊𝐄𝐶,𝑛, ext

Pick 𝑁𝑆, pick one 𝐆𝑗

Pick 𝑦, set 𝐾𝐸𝑆 = 𝑔𝑗
𝑦

𝑁𝑆, 𝐆𝑗 , KE𝑆, ext
Do: ES = KE𝑆

𝑥𝑗

Do: ES = KE𝐶,𝑗
𝑦

H1 = 𝐻(𝑁𝐶 …KE𝑆, 𝑒𝑥𝑡)

𝑥ES = HKDF. Ext(0, ES)

tkℎ𝑠 = HKDF. Exp(xES, 𝑙1| H1)

Extract with 0 salt: secure only in the ROM 



THE SECURITY OF TLS 1.3 (FULL)

Client Server

Stage 1

Pick 𝑁𝐶

Pick 𝐆1, 𝐆2…𝐆𝑛
x1, x2…x𝑛

Set 𝐊𝐄𝐶,𝑖 = (𝐆𝑖 , 𝑔𝑖
𝑥𝑖)

𝑁𝐶, 𝐊𝐄𝐶,1…𝐊𝐄𝐶,𝑛, ext

Pick 𝑁𝑆, pick one 𝐆𝑗

Pick 𝑦, set 𝐾𝐸𝑆 = 𝑔𝑗
𝑦

𝑁𝑆, 𝐆𝑗 , KE𝑆, ext
Do: ES = KE𝑆

𝑥𝑗

Do: ES = KE𝐶,𝑗
𝑦

H1 = 𝐻(𝑁𝐶 …KE𝑆, 𝑒𝑥𝑡)

𝑥ES = HKDF. Ext(0, ES)

tkℎ𝑠 = HKDF. Exp(xES, 𝑙1| H1)

Handshake keys based on entire handshake so far



KEY CONFIRMATION

ES

0

Ext xES

ExpH1|l1𝐻(𝑁𝐶 …KE𝑆, 𝑒𝑥𝑡) = tkℎ𝑠

Client Server

{Cert}tkℎ𝑠

Do: H2 = 𝐻(𝑁𝐶 …Cert)
Set C. Vf = Sign(skS, H2){C. Vf}tkℎ𝑠Verify C. Vf

Verify Cert

AE secure bc. of tkℎ𝑠

Certificate confirms tkℎ𝑠



KEY CONFIRMATION

ES

0

Ext xES

ExpH1|l1𝐻(𝑁𝐶 …KE𝑆, 𝑒𝑥𝑡) = tkℎ𝑠

Client Server

{Cert}tkℎ𝑠

Do: H2 = 𝐻(𝑁𝐶 …Cert)
Set C. Vf = Sign(skS, H2){C. Vf}tkℎ𝑠Verify C. Vf

Verify Cert

Confirmation of 

key in Certificate



KEY CONFIRMATION

Client Server

Do: SS = KE𝑆
𝑥 Do: SS = KE𝐶

𝑦𝑥SS = HKDF. Ext(0, SS)

FS = HKDF. Exp(xSS, 𝑙2| H3)

Do: H3 = 𝐻(𝑁𝐶 …C. Vf)

SFin = HMAC(FS, 𝑙3|H3){SFin}tkℎ𝑠
Verify SFin

CFin = HMAC(FS, 𝑙4|H4)
Do: H4 = 𝐻(𝑁𝐶 …SFin)

{CFin}tkℎ𝑠

𝑚ES = HKDF. Exp(𝑥ES, 𝑙5|H3) 𝑚SS = HKDF. Exp(𝑥ES, 𝑙6|H3)

MS = HKDF. Ext(𝑚ES,𝑚SS)

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

H5 = 𝐻(𝑁𝐶 …CFin)

Stage 2

Based on entire 

handshake so far



KEY CONFIRMATION

Client Server

Do: SS = KE𝑆
𝑥 Do: SS = KE𝐶

𝑦𝑥SS = HKDF. Ext(0, SS)

FS = HKDF. Exp(xSS, 𝑙2| H3)

Do: H3 = 𝐻(𝑁𝐶 …C. Vf)

SFin = HMAC(FS, 𝑙3|H3){SFin}tkℎ𝑠
Verify SFin

CFin = HMAC(FS, 𝑙4|H4)
Do: H4 = 𝐻(𝑁𝐶 …SFin)

{CFin}tkℎ𝑠

𝑚ES = HKDF. Exp(𝑥ES, 𝑙5|H3) 𝑚SS = HKDF. Exp(𝑥ES, 𝑙6|H3)

MS = HKDF. Ext(𝑚ES,𝑚SS)

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

H5 = 𝐻(𝑁𝐶 …CFin)

Stage 2

Depends on: full-session hash, ES, SS 

Verify CFin



{CFin}tkℎ𝑠

KEY CONFIRMATION

Client Server

Do: SS = KE𝑆
𝑥 Do: SS = KE𝐶

𝑦𝑥SS = HKDF. Ext(0, SS)

FS = HKDF. Exp(xSS, 𝑙2| H3)

Do: H3 = 𝐻(𝑁𝐶 …C. Vf)

SFin = HMAC(FS, 𝑙3|H3){SFin}tkℎ𝑠
Verify SFin

CFin = HMAC(FS, 𝑙4|H4)
Do: H4 = 𝐻(𝑁𝐶 …SFin)

𝑚ES = HKDF. Exp(𝑥ES, 𝑙5|H3) 𝑚SS = HKDF. Exp(𝑥ES, 𝑙6|H3)

MS = HKDF. Ext(𝑚ES,𝑚SS)

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

H5 = 𝐻(𝑁𝐶 …CFin)

Stage 2

Depends on: full-session hash, ES, SS 

Confirms 

full-session hash

Verify CFin



CFin = HMAC(FS, 𝑙4|H4) {CFin}tkℎ𝑠

{SFin}tkℎ𝑠
SFin = HMAC(FS, 𝑙3|H3)

KEY CONFIRMATION

Client Server

Do: SS = KE𝑆
𝑥 Do: SS = KE𝐶

𝑦𝑥SS = HKDF. Ext(0, SS)

FS = HKDF. Exp(xSS, 𝑙2| H3)

Do: H3 = 𝐻(𝑁𝐶 …C. Vf)

Verify SFin

Do: H4 = 𝐻(𝑁𝐶 …SFin)

𝑚ES = HKDF. Exp(𝑥ES, 𝑙5|H3) 𝑚SS = HKDF. Exp(𝑥ES, 𝑙6|H3)

MS = HKDF. Ext(𝑚ES,𝑚SS)

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

H5 = 𝐻(𝑁𝐶 …CFin)

Stage 2

Depends on: full-session hash, ES, SS 

Confirms SS

Verify CFin



{SFin}tkℎ𝑠
SFin = HMAC(FS, 𝑙3|H3)

CFin = HMAC(FS, 𝑙4|H4) {CFin}tkℎ𝑠

KEY CONFIRMATION

Client Server

Do: SS = KE𝑆
𝑥 Do: SS = KE𝐶

𝑦𝑥SS = HKDF. Ext(0, SS)

FS = HKDF. Exp(xSS, 𝑙2| H3)

Do: H3 = 𝐻(𝑁𝐶 …C. Vf)

Verify SFin

Do: H4 = 𝐻(𝑁𝐶 …SFin)

𝑚ES = HKDF. Exp(𝑥ES, 𝑙5|H3) 𝑚SS = HKDF. Exp(𝑥ES, 𝑙6|H3)

MS = HKDF. Ext(𝑚ES,𝑚SS)

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

H5 = 𝐻(𝑁𝐶 …CFin)

Stage 2

Depends on: full-session hash, ES, SS

Confirms ES

Verify CFin



RMS = HKDF. Exp(MS, 𝑙8|H5)

EMS = HKDF. Exp(MS, 𝑙8|H5)

STAGES 3 AND 4

Client Server

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

Stage 3

Stage 4

{psk𝐼𝐷}tk𝑎𝑝𝑝 Pick psk𝐼𝐷

MS = HKDF. Ext(𝑚ES,𝑚SS) H5 = 𝐻(𝑁𝐶 …CFin)

Computed from same MS value

Independent labels => independent keys

Hard to retrieve MS from any of these keys



RMS = HKDF. Exp(MS, 𝑙8|H5)

EMS = HKDF. Exp(MS, 𝑙8|H5)

STAGES 3 AND 4

Client Server

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

Stage 3

Stage 4

{psk𝐼𝐷}tk𝑎𝑝𝑝 Pick psk𝐼𝐷

MS = HKDF. Ext(𝑚ES,𝑚SS) H5 = 𝐻(𝑁𝐶 …CFin)

Computed from same MS value

Independent labels => independent keys

Hard to retrieve MS from any of these keys



PRIVACY PRESERVATION

 Several stages, one stage per key:

Client Server

plaintext messages

Stage 1

Compute tkℎ𝑠 Compute tkℎ𝑠
messages encrypted

using tkℎ𝑠 Stage 2

Compute tk𝑎𝑝𝑝 Compute tk𝑎𝑝𝑝

Compute R.MS Compute R.MS

Stage 3

Compute E.MS Compute E.MS

Stage 4

encrypted psk𝐼𝐷
using tk𝑎𝑝𝑝

Privacy-preserving



PART 5

SESSION RESUMPTION & 0-RTT



TWO TYPES OF SESSION RESUMPTION

 Simple Pre-Shared-Key (PSK) mode:

 Client asks for PSK mode

 Server sends a psk𝑖𝑑 value, associated with RMS

 For that handshake: ES = SS = RMS

 Handshakes change a little (include psk𝑖𝑑)

 PSK + DHE mode:

 Start as in PSK mode (sending psk𝑖𝑑)

 Hybrid mode: also send 𝑔𝑥, 𝑔𝑦 (same group as in psk𝑖𝑑)

 ES computed as in full handshake, and SS = RMS



STAGE 1 OF PSK+DHE

 Stage 1: handshake keys

Client Server

Stage 1

Pick 𝑁𝐶

Pick 𝐩𝐬𝐤𝑖𝑑,1, …𝐩𝐬𝐤𝑖𝑑,𝑛
x1, x2…x𝑛

Set 𝐊𝐄𝐶,𝑖 = 𝑔𝑖
𝑥𝑖

𝑁𝐶, 𝐊𝐄𝐶,1…𝐊𝐄𝐶,𝑛
𝐩𝐬𝐤𝑖𝑑,1, … 𝐩𝐬𝐤𝑖𝑑,𝑛 Pick 𝑁𝑆, pick psk𝑖𝑑,𝑗

Pick 𝑦, set 𝐾𝐸𝑆 = 𝑔𝑗
𝑦

𝑁𝑆, KE𝑆, psk𝑖𝑑,𝑗
Do: ES = KE𝑆

𝑥𝑗

Do: ES = KE𝐶,𝑗
𝑦

H1 = 𝐻(𝑁𝐶 …KE𝑆, psk𝑖𝑑,𝑗)

𝑥ES = HKDF. Ext(0, ES)

tkℎ𝑠 = HKDF. Exp(xES, 𝑙1| H1)



STAGE 2 OF PSK + DHE

Client Server

Do: SS = RMS Do: SS = RMS

{Cert}tkℎ𝑠

Do: H2 = 𝐻(𝑁𝐶 …Cert)
Set C. Vf = Sign(skS, H2){C. Vf}tkℎ𝑠

Verify C. Vf

Verify Cert

𝑥SS = HKDF. Ext(0, SS)

FS = HKDF. Exp(xSS, 𝑙2| H3)

Do: H3 = 𝐻(𝑁𝐶 …C. Vf)

SFin = HMAC(FS, 𝑙3|H3){SFin}tkℎ𝑠
Verify SFin

CFin = HMAC(FS, 𝑙4|H4)
Do: H4 = 𝐻(𝑁𝐶 …SFin)

{CFin}tkℎ𝑠

𝑚ES = HKDF. Exp(𝑥ES, 𝑙5|H3) 𝑚SS = HKDF. Exp(𝑥ES, 𝑙6|H3)
MS = HKDF. Ext(𝑚ES,𝑚SS)

tk𝑎𝑝𝑝 = HKDF. Exp(MS, 𝑙7| H5)

H5 = 𝐻(𝑁𝐶 …CFin)

Stage 2

Verify CFin



VERY FAST HANDSHAKE – 0-RTT

 Zero Roundtrip time – 0-RTT mode

 Designed so client can encrypt from the first message

 A main characteristic of modern AKE schemes

 Requires knowledge of some public or private value 

corresponding to a server

 In TLS, 4-stage protocol turns into 6-stage one

 Use pre-shared key to compute early data key

 Use that key to execute the remainder of handshake

 Generate keys as before, including EMS, RMS



STAGE 1 IN 0-RTT

Client Server

Stage 1

Pick 𝑁𝐶 , 𝑥

Has some  𝐜𝐨𝐧𝐟𝐢𝐠𝑖𝑑 for S

Set 𝐊𝐄𝐶 = (𝑔𝑥)
𝑁𝐶, 𝐊𝐄𝐶, 𝐜𝐨𝐧𝐟𝐢𝐠𝑖𝑑

Retrieve 𝑦 from 𝐜𝐨𝐧𝐟𝐢𝐠𝑖𝑑

Do: SS = KE𝑆
𝑥

Do: SS = KE𝐶
𝑦

H1 = 𝐻(𝑁𝐶 …𝐜𝐨𝐧𝐟𝐢𝐠𝑖𝑑, Cert)

𝑥SS = HKDF. Ext(0, SS)

tk𝑒𝑎ℎ = HKDF. Exp(xSS, 𝑙1| H1)

Retrieve Cert in 𝐜𝐨𝐧𝐟𝐢𝐠𝑖𝑑

Server pk is: 𝐊𝐄𝑆



STAGE 2 IN 0-RTT MODE

Client Server

Stage 1tk𝑒𝑎ℎ = HKDF. Exp(xSS, 𝑙1| H1)

H1 = 𝐻(𝑁𝐶 …𝐜𝐨𝐧𝐟𝐢𝐠𝑖𝑑, Cert)

FS0−RTT = HKDF. Exp(xSS, 𝑙2| H1)

𝑥SS = HKDF. Ext(0, SS)

CFin0 = HMAC(FS, H1)
{CFin0}tk𝑒𝑎ℎ Verify CFin0

tk𝑒𝑎𝑑 = HKDF. Exp(xSS, 𝑙3| H1) Stage 2

Pick 𝑁𝑆
Pick 𝑒𝑝ℎ, set Eph𝑆 = 𝑔𝑒𝑝ℎ

Do: ES = KE𝐶
𝑒𝑝ℎ

{𝑁𝑆, Eph𝑆}tk𝑒𝑎𝑑

Do: ES = Eph𝑆
𝑥

𝑥ES = HKDF. Ext(0, ES)

H2 = 𝐻(𝑁𝐶, 𝐊𝐄𝐶, 𝐜𝐨𝐧𝐟𝐢𝐠𝑖𝑑, 𝑁𝑆, Eph𝑠)

tkℎ𝑠 = HKDF. Exp(xES, 𝑙3| H2) Stage 3



STAGES 4-6

 Stage 3 ends like stage 1 of full handshake

 Some differences:

 One intermediate & one long-term client Finished

 Finished keys for server & client are different

 Some keys take as input just labels, not hashes

 Master secret yields five different keys

 A much more complicated key-scheduling mechanism



0-RTT MODE STAGES 4-6

ES

0

Ext xES

ExpH3|l4 tkℎ𝑠

Exp mES

SS

0

Ext xSS

Exp FS0−RTT

Exp mSS

Ext MS

l2

H3|l5

H3|l6

H3|l9

Exp

tk𝑎𝑝𝑝

Exp

Exp

H1|l1

tk𝑒𝑎ℎH3|l3tk𝑒𝑎𝑑

Exp

Exp

Exp

Exp

l7

FS𝑆

l8
FS𝐶

H4|l10

RMS

H4|l11

EMS



PART 6

SAFELY EXPORTING KEYS



EXPORT KEYS IN AKE

 Authenticated Key-Exchange:

 Allow two parties to establish a secure channel

 Output: a set of channel keys, to use for AE

 Can sometimes also provide export keys

 “Good” export keys:

 Indistinguishable from random

 Do not reveal anything about secret channel keys

 The channel keys do not reveal anything about the 

export keys

 In short: it is best to have independent export keys



“TLS-LIKE” PROTOCOLS [BJS16]

 Recall ACCE security:

 Mutual authentication (otherwise SACCE)

 Channel security

 TLS-like protocols:

 ACCE-secure authenticated key-exchange

 Both parties generate randomness at every session

 During the protocol, both parties compute MS

 Keys computed as 𝐾 ≔ KDF(MS, nonces, 𝐹(T))

 T is protocol transcript, F is publicly computable



TLS 1.2 GOOD EXPORT KEYS

 Given a TLS-like protocol (e.g. TLS 1.2)

 Nonces: 𝑁𝐶 , 𝑁𝑆
 Master secret msk

 Keys derived as: 𝐻𝑀𝐴𝐶(𝑚𝑠𝑘;𝑁𝐶|𝑁𝑆)

 Consider the following export keys:

 EK ≔ 𝑃𝑅𝐹(msk;𝑁𝐶|𝑁𝑆, aux) s.t. EK ≠ 𝐾𝑒𝑦𝑠

 Then these keys are good export keys

 The main reason is: MS remains hidden at all times



EXPORT KEYS FOR TLS 1.3

 Exercise 1:

 Is TLS 1.3 “TLS-like” [BJS16]?

 Exercise 2:

 Assume TLS 1.3 is secure (proofs by DFG+15, FG16), 

which means tk𝑎𝑝𝑝 is indistinguishable from random

 What does this mean for the master secret ?

 What can you say about EMS, RMS


