INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

INSA -

(&:1RISA

PUBLIC KEY CRYPTOGRAPHY:
ENCRYPTION, SIGNATURES, FDH

‘ The ROM, FDH, using the ROM

FROM PREVIOUS LECTURE

Ciphers
Stream ciphers : many follow OTP + PRG strategy
Block ciphers : work on plaintext of limited size = block
output ciphertexts of same size
Modes of operation : used to encrypt longer messages

Hash functions

Basic properties : first/second preimage resistance,
collision resistance

Can be used to construct primitives like HMacs

PART 1
BACKGROUND

DIVISORS, PRIMES, GCD

Assume: positive integers a,b € N

Division: “a divides b” iff. 3k e Nst.a=k-b

We write a | b and say a is a divisor of b

Examples: 224,11 121, etc.

Prime numbers: positive integers greater than 1 only
divisible by 1 and themselves

1 1s not a prime number. Nor 1s O.

Modular arithmetic: remainder of division
amodb=rst.3keZwitha=kb+randr €N
E.g.15mod 2 =1;235mod5=0; 135mod 11 =3

EQUIVALENCE CLASSES, GCD

Equivalence mod n:
a=, biff. amodn =bmodn

Equivalence classes a,:
a, ={b €Z|a =, b}
For instance 3;, = {...—12,3,15,27, ...}

Common divisor: d 1s common divisor of a, b 1iff.:
d|la andd|b

Greatest common divisor: largest such d
GCD(15,35) =5
GCD(52,236) = 4

FINDING GCD

If a = b, 1t holds that: GCD(a, b) = GCD(b, a mod b)
This 1s because if d | a and d | b, then d | (a mod b)
Why? Write a = bqg +1r,a = kd, b = sd

Then kd = qsd +r,sod(k —gs) =r andd |r

For anya > b :if amod b = 0 then GCD(a,b) = b

Hence Euclid’s algorithm, input a > b:
1.1f a mod b = 0, then output b
2. else, repeat procedure on input (b, a mod b)

Total complexity: O(log? a)

EXTENDED GCD

Theorem:

If d = GCD(a, b), then d is the smallest positive integer for
which there exist integers r.s such that:

d = ar + bs
If d =1, a,b are called co-prime

Extended GCD:

Input a, b
Output: d,r, s

GROUPS

Set G, operator o such that:
Closure: Va,b € Git holdsacb € G
Associativity: V a,b,c € Git holds (aeb)oc=aco (boc)
Identity element: 3 e€ G, Va € Gs.t..ace=eca=a
Inverse element: Va 3a ' s.t.:ac(a™) =(a)oa=ce

(G,0) 1s an Abelian group iff:
(G,0) 1s a group
Va,beE G: aocb=boa

Example: ({0, ...,n — 1}, +(mod n))
Another example: (Z,* mod p)

SUBGROUPS AND ORDERS

Order |G| of group (G,°): # elements in G
Subgroup (H,o) of (G,o):

(H,o) 1s a group

H<c G

Theorem [Lagrange]:
If G 1s finite and (H,°) subgroup of (G,°)
Then |H| divides |G|

CYCLIC GROUPS

Cyclic groups (G,o) of order n 1s cyclic iff.:
G={9,.9°9,--,9°9°g-.°g}
n times

We call g a generator of this group
Any element can be a generator

Theorem [Fermat’s little theorem]:
If (G,°) 1s a finite subgroup
Then V a € G it holds that a!® =1

(GROUPS AND SUBGROUPS WE USE

For a prime p: (Z3, *modp)
Integers modulo a prime, under multiplication mod p
Abelian (multiplication is commutative)

Variation: sometimes in ECC we use (E (sz), +E)

For primes p, g: (G,*y) with N = pq

G={1<g<N-1s.t. GCD(g,N) =1}
Cardinality: # of numbers co-prime with N
Usually denoted by Euler’s @ function:

d(pqg) =(p—-1(@-1)
Eg:p=3;9=7; G=1{1,24,58,10,11,13,16,17,19,20}

PART 11
ENCRYPTION SCHEMES

PUBLIC-KEY ENCRYPTION

» Syntax: algorithms (KGen, Enc, Dec) such that:
- KGen(1%) : given security parameters, outputs tuple
(sk,pk) consisting of a private/public key
= Enc(pk; m) : given plaintext and public key, outputs
ciphertext c
- Dec(sk; c) : given ciphertext and secret key, outputs
plaintext m or error symbol L

k
S
C k;
p m

pk

-

PUBLIC-KEY ENCRYPTION

Correctness:
For all tuples (sk,pk) « KGen(1%) and for all plaintexts
m € M, 1t must hold that Dec(sk; Enc(pk; m)) =m

Sometimes we degrade it to e-correctness in which the
decryption fails with probability e
IND-CPA: eavesdropper can’t tell even 1 bit of p-text
(sk,pk) < KGen (11)
b <3 {0,1}

(my,my) « 2 (pk, 11)
¢ < Enc(pk; my)

d < g#(c, pk,1")

A winsiff.d = b

EL-GAMAL ENCRYPTION

Before key-generation: setup
Pick primes p,q such that p = 2q + 1

Group H = (Zj,*mod p) and cyclic subgroup G of H of
prime order g under the same operation

Generator g of G

Key generation:

Secret key sk < {1,...,q — 1}; public key pk = g5* mod p
Encryption of message m € G:

Pick r «¢ {1,...,q — 1}, set c = (g" mod p, m - pk™ mod p)
Decryption of ¢ = (cq,¢5):

Set M = CZ/ka

(GENERIC MESSAGES

Message has to be in G

What happens otherwise?
Could use m?, form e H\ G (if m € H \ G, then the order
of m is not g; yet, the order of m? isq) Proof in TD
Encrypt m? instead of m, take Vi at decryption
Could also modify scheme a little bit, using a hash
function:
Encryption: (g7, H(pk™) @ m)
Decryption: M = ¢, @ H(c$%)
We can prove security as long as the hash function H preserves
the pseudorandomness of pk”

EL-GAMAL SECURITY

Theorem:
If there exists an adversary ¢# who can break the
IND-CPA security of the El Gamal scheme with
probability = + Adv oA

... then there exists an adversary B who can break
the DDH assumption in group H with probability p B

such that:
1 1

poBZE‘FEAdVOQ

REMINDER: HARD PROBLEMS BASED ON DLOG

Setup:
Cyclic group G of prime order g, generator g
DLog:
Given q,g,9%, find a € {1, ...q — 1} (g and q fully define G)
CDH
Given q, g, g% g° find g%
DDH
Given q, g, 9% g°, g¢ find out whether ¢ = ab or not

Note:
If DLog is solved, then we can solve CDH
If we can solve CDH, then we can solve DDH

PROOF

What does breaking DDH mean?

B plays a game against a challenger
Depending on a bit b, B receives (g, g% g°,g*) (if b = 1) or
(g,9% g°, 9%, for a,b,c <4 {1,...q}
B must output a bit guessy and wins iff. guessg = b

Constructing B that uses A
Upon receiving tuple (g,g“,gb,gz) withz=aborz=c
B gives A: (g, pk = g%)
A chooses and sends B messages (m,, m;)
B chooses a bit b*, outputs (g?, g% - my+), send to A
A outputs guess, and wins iff guess, = b*
B outputs (guess, == b")

ANALYSIS

Constructing B that uses A
Upon receiving tuple (g,ga,gb,gz) withz=aborz=c
B gives A: (g, pk = g%)
A chooses and sends B messages (mg, m;)
B chooses a bit b*, outputs (g?, g% - my+), send to A
A outputs guess, and wins iff guess, = b*
B outputs (guess, == b")

Analysis:
Ifb=1, Bgot (g,9% g® g?), which means A plays the
true game: so A wins w.p. % + Adv,

Ifb=0, B got (g,g“,gb,gc), so A wins w.p. %

MALLEABILITY

Malleability, to maul:
Informally: ability to “re-shape” things
Not always bad — crucial in homomorphic crypto
Bad for IND-CCA

ElGamal 1s malleable:
Say we encrypt message m with randomness r
(c1,¢2) = (g7, m - pk")
Now pick random s «¢ {1, ...,q — 1}
Maul ciphertext: c; = ¢; = g%, ¢; = c; = m® pk™®
Then (cj, c3) 1s an encryption of m?

IND-CPA vs IND-CCA

IND-CPA: eavesdropper can’t tell even 1 bit of p-text
(sk,pk) < KGen (11)

(mO ’ ml) < 04 (pkr 11)
¢ < Enc(pk; my)

d < of(c,pk, 1)

A wins iff. d = b

IND-CCA: even if we have power of decryption,
can’t learn even 1 bit of fresh message

Same as before, but include Dec. oracle
A must not query challege ciphertext to Dec.

MALLEABILITY AND IND-CCA

Malleability informally means that one can use a
relation on the input to induce a relation on the
output.

Malleability usually implies encrpytion scheme is
not IND-CCA

Why?
Key to IND-CCA success: A cannot query the challenge
ciphertext
Maul challenge ciphertext, then query it to Dec
Perform inverse transformation

IND-CCA ENCRYPTION

Much harder to get than IND-CPA encryption

Must prevent malleability, so usually we would use
something to verify the integrity of the message

Would using a hash function help?
Enc(pk, H(m)) : doesn’t work. Why not?
How about H(Enc(pk; m))?

Could we use a PRF instead?

Enc(pk, PRF(K,m)): security 1s ok, but why would we do
PKE if we already had a shared key?

PART II1
SIGNATURE SCHEMES

DIGITAL SIGNATURES

Syntax: algorithms (KGen, Enc, Dec) such that:
KGen(1%) : given security parameters, outputs tuple
(sk,pk) consisting of a private/public key
Sign(sk; m) : given plaintext and secret key, outputs
signature o
Vf(pk; m, o) : given message, signature and public key,
outputs a bit 1 if ¢ checks for m, 0 otherwise

sk pk
v !

pk;
m, o

| sk, m m,o = l
0/1

SIGNATURE SECURITY

Correctness:
For all tuples (sk,pk) « KGen(1%) and for all messages

m € M, 1t must hold that Vf(pk; m, Sign(sk; m)) =1

Sometimes we degrade it to e-correctness in which the
verification of a signed message fails with probability e

EUF-CMA: adversary can’t forge fresh signature
(sk,pk) < KGen (11)

(m , O') — OQSign(*) (pk, 1/1)
Store list Q = {(m, g¢), ... (my, 73,)} of queries to Sign

o wins iff. (m, *) € Q and Vf(pk;m,0) =1

RSA SIGNATURES

RSA setup:
Large primes p, q, let N = pq
Subgroup of co-primes with N, size ®(N) = (p —1)(g — 1)
Work in subgroup mod ®(N)

RSA signatures:

KGen: Find e €; {1, ..., ®(N)} such that GCD(1, ®(N)) and its
inverse d such that e-d = 1 mod ®(N)

Public key PK = (N, e); Secret key SK = d

Sign message m:
o =m%modN

Verify signature o for message m
Output 1 iff. m = 0® mod N and output O otherwise

Not EUF-CMA

RSA Signature

« Key Generation:

pk =N, e sk =

d

« Sign:

o =m% mod N

« Verify:

‘?
m =0 modN

No Sign(-) queries:

Pick random string s
Compute m = s® mod N
Output (m, s) as forgery

Forgery with 2 queries:

Want to forge signature for
glven message m

Pick m, at random, ask

signature: g; = m% mod N

Compute m, s.t. mym, =
m mod N, get o, = m$ mod N
Output (m,0,0, mod N)

How 10 GET EUF-CMA

Use Hash functions, and sign hash of message

The Probabilistic Full-Domain-Hash RSA scheme:
Use a hash function H:{0,1}* —» Zy

KGen: Obtain (N, e, d) < KGengs,(14), set:
PK = (N,e); SK =d

Sign: Choose random r €4 {0,1}*, computey = H(r | | m),
output signature:
o = (r,y* mod N)

Verification: receive m,o = (1, s), output 1 iff.
s =H(r||m)

SECURITY OF PFDH-RSA

Assumptions on hash functions:
Collision-resistance sometimes suffices

However, proofs for signatures are hard to do relying
just on collision resistance

Need a stronger assumption

Random oracles, the ROM:

Imagine an 1dealization of a hash function
Every time we query the idealization on a value x,
check RO has not been queried with x before:
If so, output new uniformly random value of good length
Else output previously seen value for x

RSA ASSUMPTION

The RSA problem:

Given an RSA instance, with public key (N, e)
Given “ciphertext’: € = m® mod N
Compute m

The RSA assumption:
The RSA problem is hard to solve for a PPT adversary

The strong RSA assumption:

Alow Adversary to choose exponent e
Given (N, C), hard to output (m,e) s.t. C = m® mod N

SECURITY OF PFDH

Theorem:
Take |r| = Log g5

In the random oracle model

If there exists an adversary A against the EUF-CMA
of the PFDH scheme, making at most gy queries to H
and at most g5 queries to Sign, winning with
probability py,...

Then there exists an adversary B that solves the RSA

problem with probability
1

>
PB—4PA

PROGRAMMING A RO

Key observations:
A does not have much use submitting messages to Sign
oracle without submitting them to Hashing RO first

Not entirely true, we would lose a guessing term here

A cannot output a meaningful forgery for a message m
without submitting it to Hashing RO first

Again, not entirely true, same considerations as before

A has no use querying the same message twice to the
random oracle (since the RO always returns the same
thing)

SECURITY PROOF FOR PFDH-RSA

Proof intuition:

The random oracle randomizes the messages to be
signed; in fact, by choosing different values of r we
get different values of H(r || m)

Multiple related signatures per message:
om —— (ry, [H(r; | |m)]* mod N)

om —— (ry, [H(r, | |m)]¢ mod N)

om —— (r, [H(re | | m)]¢ mod N)

Because of the RO, all hashes are different

CONSTRUCTING THE REDUCTION

Adversary B plays the RSA problem

It needs to simulate the EUF-CMA game to
adversary A, and use its output

Setup:

Adversary B receives tuple (N, e) and C = m® mod N
for some m

B must then answer queries from A for signatures

B prepares for each m a list of g5 values like this:
Choose random r;
Choose random x; < N
Given e calculate: z; = x{

Store tuple (m, 1}, x;, z;); all tuples with same m make up L,,

THE REDUCTION

Every time A queries the RO H(m | | r), B responds
as follows:
Create initially empty table T with entries (-,-,")
If m is queried for the first time, B first makes up L,,
Else, assume L,, 1s already created
If there exists in T an entry (m | | 7, x, z), return z

If r € {ry, ..., 7.} from list L,,,, then output z; and insert in T
anentry (m||r;, x;, z;)

Else, if r not used in L,,, choose random x and output to A
the value z = C x® mod N and store (m||r,x,z) in T

Remember A has g5 signature queries

FINISHING THE REDUCTION

Apart from RO queries, A can ask signature
queries to the signing oracle

B has to respond to these queries

When A queries Sign(m):
If m does not have a corresponding L,,, generate it

Else, pick the next value of r in that list, see if there
1s a related entry (m | | r,x,z) in T, output (r, x)

If there 1s no such related entry, create one, and
output the same thing

WINNING OR LOSING

Finally A outputs a forgery of the type:
(m, (r,s))
IfrelL,, abort

Else, if r € L,,,, find corresponding entry in T and output (to
B’s challenger):

— modN
X

Note: A outputs forgery on message not queried to
signature oracle before

But he could have input (m | | r) to RO instead, got x
Only way to get r from L,,, is by guessing it:
Total probability it doesn’t happen: (1 — 2-I"Has

RANDOM ORACLES

Idealising hash function in a very useful way
Can get nice properties for key-exchange, encryption,
signatures, and many other primitives

However, random oracles are a bit too 1deal

We know that some primitives that are “secure” in
the presence of random oracles are insecure no
matter which hash function we use for our RO

Proofs 1n ROM:

Tricky bit is to program the RO: store queries, know
what to answer

Alternative to ROM: standard model

FULL-DOMAIN HASHING

Generalized beyond RSA by trapdoor permutations

Trapdoor permutations:

Family of 1-way permutations {fx: D, = R;} with K € K,
such that Dy, Ry, K are binary sets of arbitrary length.
Includes algorithms (Gen, Sample, f, f ~1) such that:

Gen: on input 1% outputs tuple K € K and trapdoor T

Sample: on input the key K, this algorithm efficiently samples
Input x € Dy

f:on input K and any x € Dy, efficiently outputs y = fx(x)

f~1:oninput K, trapdoor T and any y € Ry, efficiently outputs
inverse x such that y = fx(x)

Security: without trapdoor T, hard to invert f

PKE AS TRAPDOOR PERMUTATION

Trapdoor permutation

« Algorit

hm Gen

K

T

* Function f: efficient to get

e Inverse f~! easy with T

y = fk(x)

x = fx "(T,y)

PKE

* Algorithm KGen

PK SK

* Encryption algorithm

y = Encpg(x)

e Decryption algorithm

x = Decsi (y)

(GENERALIZED FDH

Take Trapdoor permutation TDP = {Gen, Sample, f, f 1}
Take hash function H:{0,1}* - {0,1}"

Key Generation: Run (K, T) < Gen(1%). Set:
PK:=K and SK=T

Signing: Compute r = H(m), then do: y := Sample (PK;r)
Signature is: o = f7 1 (y)

Verification: Do r := H(m), then: y := Sample (PK;).
Output 1 iff. f(o) =y

