
PUBLIC KEY CRYPTOGRAPHY: 

ENCRYPTION, SIGNATURES, FDH

The ROM, FDH, using the ROM



FROM PREVIOUS LECTURE

 Ciphers 

 Stream ciphers : many follow OTP + PRG strategy

 Block ciphers : work on plaintext of limited size = block

output ciphertexts of same size

 Modes of operation : used to encrypt longer messages

 Hash functions 

 Basic properties : first/second preimage resistance, 

collision resistance

 Can be used to construct primitives like HMacs



PART I

BACKGROUND



DIVISORS, PRIMES, GCD

 Assume: positive integers 𝑎, 𝑏 ∈ ℕ

 Division: “𝑎 divides 𝑏” iff. ∃ 𝑘 ∈ ℕ s.t. 𝑎 = 𝑘 ∙ 𝑏

 We write 𝑎 | 𝑏 and say 𝑎 is a divisor of 𝑏

 Examples: 2 | 24 , 11 | 121 , etc.

 Prime numbers: positive integers greater than 1 only 

divisible by 1 and themselves

 1 is not a prime number. Nor is 0.

 Modular arithmetic: remainder of division

 𝑎 mod 𝑏 = 𝑟 s.t. ∃ 𝑘 ∈ ℤ with 𝑎 = 𝑘𝑏 + 𝑟 and 𝑟 ∈ ℕ

 E.g. 15 mod 2 = 1; 235 mod 5 = 0; 135 mod 11 = 3



EQUIVALENCE CLASSES, GCD 

 Equivalence mod 𝑛: 

 𝑎 ≅𝑛 𝑏 iff. 𝑎 mod 𝑛 = 𝑏 mod 𝑛

 Equivalence classes 𝑎𝑛:

 𝑎𝑛 = 𝑏 ∈ ℤ 𝑎 ≅𝑛 𝑏}

 For instance 312 = {…− 12, 3, 15, 27, … }

 Common divisor: 𝑑 is common divisor of 𝑎, 𝑏 iff.:

 𝑑 | 𝑎 and 𝑑 | 𝑏

 Greatest common divisor: largest such 𝑑

 GCD 15,35 = 5

 GCD 52, 236 = 4



FINDING GCD

 If 𝑎 ≥ 𝑏, it holds that: GCD 𝑎, 𝑏 = GCD(𝑏, 𝑎 mod 𝑏)

 This is because if 𝑑 | 𝑎 and 𝑑 | 𝑏, then 𝑑 | (𝑎 mod 𝑏)

 Why? Write 𝑎 = 𝑏𝑞 + 𝑟, 𝑎 = 𝑘𝑑, 𝑏 = 𝑠𝑑

Then 𝑘𝑑 = 𝑞𝑠𝑑 + 𝑟, so 𝑑 𝑘 − 𝑞𝑠 = 𝑟 and 𝑑 | 𝑟

 For any 𝑎 ≥ 𝑏 : if 𝑎 mod 𝑏 = 0 then GCD 𝑎, 𝑏 = 𝑏

 Hence Euclid’s algorithm, input 𝑎 ≥ 𝑏:

 1. if 𝑎 mod 𝑏 = 0, then output 𝑏

 2. else, repeat procedure on input (𝑏, 𝑎 mod 𝑏)

 Total complexity: O(log2 𝑎)



EXTENDED GCD

 Theorem:

 If 𝑑 = GCD(𝑎, 𝑏), then 𝑑 is the smallest positive integer for 

which there exist integers 𝑟. 𝑠 such that:

𝑑 = 𝑎𝑟 + 𝑏𝑠

 If 𝑑 = 1, 𝑎, 𝑏 are called co-prime

 Extended GCD: 

 Input 𝑎, 𝑏

 Output: 𝑑, 𝑟, 𝑠



GROUPS

 Set 𝔾, operator ∘ such that:

 Closure: ∀ 𝑎, 𝑏 ∈ 𝔾 it holds 𝑎 ∘ 𝑏 ∈ 𝔾

 Associativity: ∀ 𝑎, 𝑏, 𝑐 ∈ 𝔾 it holds 𝑎 ∘ 𝑏 ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐)

 Identity element: ∃ 𝑒 ∈ 𝔾, ∀𝑎 ∈ 𝔾 s.t.: 𝑎 ∘ 𝑒 = 𝑒 ∘ 𝑎 = 𝑎

 Inverse element: ∀𝑎 ∃𝑎−1 s.t.: 𝑎 ∘ 𝑎−1 = 𝑎−1 ∘ 𝑎 = 𝑒

 (𝔾,∘) is an Abelian group iff:

 𝔾,∘ is a group

 ∀𝑎, 𝑏 ∈ 𝔾 ∶ 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎

 Example: ( 0,… , 𝑛 − 1 ,+(mod 𝑛) )
 Another example: (ℤ,∗ mod 𝑝)



SUBGROUPS AND ORDERS

 Order |𝔾| of group (𝔾,∘): # elements in 𝔾

 Subgroup (ℍ,∘) of 𝔾,∘ :

 ℍ,∘ is a group

 ℍ ⊆ 𝔾

 Theorem [Lagrange]: 

 If 𝔾 is finite and ℍ,∘ subgroup of (𝔾,∘)

 Then |ℍ| divides |𝔾|



CYCLIC GROUPS

 Cyclic groups (𝔾,∘) of order 𝑛 is cyclic iff.:

𝔾 = {𝑔, 𝑔 ∘ 𝑔,… , 𝑔 ∘ 𝑔 ∘ 𝑔…∘ 𝑔}

 We call 𝑔 a generator of this group

 Any element can be a generator

 Theorem [Fermat’s little theorem]:

 If (𝔾,∘) is a finite subgroup

 Then ∀ 𝑎 ∈ 𝔾 it holds that 𝑎|𝔾| = 1

n times



GROUPS AND SUBGROUPS WE USE

 For a prime 𝑝: (ℤ𝑝
∗ , ∗mod 𝑝)

 Integers modulo a prime, under multiplication mod p

 Abelian (multiplication is commutative)

 Variation: sometimes in ECC we use 𝐸(ℤ𝑝2 , +𝐸)

 For primes 𝑝, 𝑞: (𝔾,∗𝑁) with 𝑁 = 𝑝𝑞

 𝔾 = {1 ≤ 𝑔 ≤ 𝑁 − 1 s. t. GCD 𝑔,𝑁 = 1}

 Cardinality: # of numbers co-prime with 𝑁

 Usually denoted by Euler’s Φ function:

 Φ 𝑝𝑞 = (𝑝 − 1)(𝑞 − 1)

 E.g.: 𝑝 = 3; 𝑞 = 7; 𝔾 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}



PART II

ENCRYPTION SCHEMES



PUBLIC-KEY ENCRYPTION

 Syntax: algorithms (KGen, Enc, Dec) such that:

 KGen(1𝜆) : given security parameters, outputs tuple

(𝑠𝑘, 𝑝𝑘) consisting of a private/public key

 Enc(𝑝𝑘;𝑚) : given plaintext and public key, outputs 

ciphertext 𝑐

 Dec(𝑠𝑘; 𝑐) : given ciphertext and secret key, outputs 

plaintext ෝ𝑚 or error symbol ⊥

KGen

Enc

pksk

pk; mc

Dec
sk; c

m



PUBLIC-KEY ENCRYPTION

 Correctness:

 For all tuples 𝑠𝑘, 𝑝𝑘 ← KGen(1𝜆) and for all plaintexts 

𝑚 ∈ 𝕄, it must hold that 𝐷𝑒𝑐 𝑠𝑘; 𝐸𝑛𝑐 𝑝𝑘;𝑚 = 𝑚

 Sometimes we degrade it to 𝜖-correctness in which the 

decryption fails with probability 𝜖

 IND-CPA: eavesdropper can’t tell even 1 bit of p-text

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑏 ←$ 0,1

𝑚0 , 𝑚1 ←A (𝑝𝑘, 1𝜆)

𝑐 ← Enc(𝑝𝑘;𝑚𝑏)

𝑑 ←A(𝑐, 𝑝𝑘, 1𝜆)

A wins iff. 𝑑 = 𝑏



EL-GAMAL ENCRYPTION

 Before key-generation: setup

 Pick primes 𝑝, 𝑞 such that 𝑝 = 2𝑞 + 1

 Group ℍ = (ℤ𝑝
∗ ,∗mod 𝑝) and cyclic subgroup 𝔾 of ℍ of 

prime order 𝑞 under the same operation

 Generator 𝑔 of 𝔾

 Key generation:

 Secret key 𝑠𝑘 ←$ {1, … , 𝑞 − 1}; public key 𝑝𝑘 = 𝑔𝑠𝑘 mod 𝑝

 Encryption of message 𝑚 ∈ 𝔾:
 Pick 𝑟 ←$ {1,… , 𝑞 − 1}, set 𝑐 = (𝑔𝑟 mod 𝑝, 𝑚 ⋅ 𝑝𝑘𝑟 mod 𝑝)

 Decryption of 𝑐 = (𝑐1, 𝑐2):

 Set ෝ𝑚 = ൗ
𝑐2

𝑐1
𝑠𝑘



GENERIC MESSAGES

 Message has to be in 𝔾

 What happens otherwise?

 Could use 𝑚2, for 𝑚 ∈ ℍ ∖ 𝔾 (if 𝑚 ∈ ℍ ∖ 𝔾, then the order 

of 𝑚 is not 𝑞; yet, the order of 𝑚2 is 𝑞)      Proof in TD

 Encrypt 𝑚2 instead of 𝑚, take √ ෝ𝑚 at decryption

 Could also modify scheme a little bit, using a hash 

function:

 Encryption: (𝑔𝑟, 𝐻 𝑝𝑘𝑟 ⊕𝑚)

 Decryption: ෝ𝑚 = 𝑐2 ⊕𝐻(𝑐1
𝑠𝑘)

 We can prove security as long as the hash function 𝐻 preserves 

the pseudorandomness of 𝑝𝑘𝑟



EL-GAMAL SECURITY

 Theorem:

 If there exists an adversary A who can break the 

IND-CPA security of the El Gamal scheme with 

probability 
1

2
+ AdvA...

 ... then there exists an adversary B who can break 

the DDH assumption in group ℍ with probability 𝑝B
such that:

𝑝B =
1

2
+
1

2
AdvA



REMINDER: HARD PROBLEMS BASED ON DLOG

 Setup:

 Cyclic group 𝔾 of prime order 𝑞, generator 𝑔

 DLog:

 Given 𝑞, 𝑔, 𝑔𝑎, find 𝑎 ∈ {1,… 𝑞 − 1} (𝑔 and 𝑞 fully define 𝔾)

 CDH

 Given 𝑞, 𝑔, 𝑔𝑎 , 𝑔𝑏 find 𝑔𝑎𝑏

 DDH

 Given 𝑞, 𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐 find out whether 𝑐 = 𝑎𝑏 or not

 Note: 

 If DLog is solved, then we can solve CDH

 If we can solve CDH, then we can solve DDH



PROOF

 What does breaking DDH mean?

 B plays a game against a challenger

 Depending on a bit 𝑏, B receives 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏 (if 𝑏 = 1) or 
(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐), for 𝑎, 𝑏, 𝑐 ←$ {1, … 𝑞}

 B must output a bit guess𝐵 and wins iff. guess𝐵 = 𝑏

 Constructing B that uses A

 Upon receiving tuple 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑧 with 𝑧 = 𝑎𝑏 or 𝑧 = 𝑐

 B gives A: (𝑔, 𝑝𝑘 = 𝑔𝑎)

 A chooses and sends B messages (𝑚0, 𝑚1)

 B chooses a bit 𝑏∗, outputs (𝑔𝑏, 𝑔𝑧 ⋅ 𝑚𝑏∗), send to A

 A outputs guess𝐴 and wins iff  guess𝐴 = 𝑏∗

 B outputs (guess𝐴 == 𝑏∗)



ANALYSIS

 Constructing B that uses A

 Upon receiving tuple 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑧 with 𝑧 = 𝑎𝑏 or 𝑧 = 𝑐

 B gives A: (𝑔, 𝑝𝑘 = 𝑔𝑎)

 A chooses and sends B messages (𝑚0, 𝑚1)

 B chooses a bit 𝑏∗, outputs (𝑔𝑏, 𝑔𝑧 ⋅ 𝑚𝑏∗), send to A

 A outputs guess𝐴 and wins iff  guess𝐴 = 𝑏∗

 B outputs (guess𝐴 == 𝑏∗)

 Analysis: 

 If b = 1, B got 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏 , which means A plays the 

true game: so A wins w.p. 
1

2
+ Adv𝐴

 If b = 0, B got 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐 , so A wins w.p. 
1

2



MALLEABILITY

 Malleability, to maul:

 Informally: ability to “re-shape” things

 Not always bad – crucial in homomorphic crypto

 Bad for IND-CCA

 ElGamal is malleable:

 Say we encrypt message 𝑚 with randomness 𝑟
𝑐1, 𝑐2 = (𝑔𝑟 , 𝑚 ⋅ 𝑝𝑘𝑟)

 Now pick random 𝑠 ←$ 1,… , 𝑞 − 1

 Maul ciphertext: 𝑐1
∗ = 𝑐1

𝑠 = 𝑔𝑟𝑠,  𝑐2
∗ = 𝑐2

𝑠 = 𝑚𝑠 𝑝𝑘𝑟𝑠

 Then (𝑐1
∗, 𝑐2

∗) is an encryption of 𝑚𝑠



IND-CPA VS IND-CCA

 IND-CPA: eavesdropper can’t tell even 1 bit of p-text

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑏 ←$ 0,1

𝑚0 , 𝑚1 ←A (𝑝𝑘, 1𝜆)

𝑐 ← Enc(𝑝𝑘;𝑚𝑏)

𝑑 ←A(𝑐, 𝑝𝑘, 1𝜆)

A wins iff. 𝑑 = 𝑏

 IND-CCA: even if we have power of decryption, 

can’t learn even 1 bit of fresh message

 Same as before, but include Dec. oracle

 A must not query challege ciphertext to Dec.



MALLEABILITY AND IND-CCA

 Malleability informally means that one can use a 

relation on the input to induce a relation on the 

output.

 Malleability usually implies encrpytion scheme is 

not IND-CCA

 Why?

 Key to IND-CCA success: A cannot query the challenge 

ciphertext

 Maul challenge ciphertext, then query it to Dec

 Perform inverse transformation



IND-CCA ENCRYPTION

 Much harder to get than IND-CPA encryption

 Must prevent malleability, so usually we would use 

something to verify the integrity of the message

 Would using a hash function help?

 Enc(𝑝𝑘,𝐻(𝑚)) : doesn’t work. Why not?

 How about 𝐻(Enc(𝑝𝑘; 𝑚))? 

 Could we use a PRF instead?

 Enc(𝑝𝑘, PRF(𝐾,𝑚)): security is ok, but why would we do 

PKE if we already had a shared key?



PART III

SIGNATURE SCHEMES



DIGITAL SIGNATURES

 Syntax: algorithms (KGen, Enc, Dec) such that:

 KGen(1𝜆) : given security parameters, outputs tuple

(𝑠𝑘, 𝑝𝑘) consisting of a private/public key

 Sign(𝑠𝑘;𝑚) : given plaintext and secret key, outputs 

signature  𝜎

 Vf(𝑝𝑘;𝑚, 𝜎) : given message, signature and public key,

outputs a bit 1 if 𝜎 checks for 𝑚, 0 otherwise

KGen

Sign

pksk

m, 𝜎sk, m

Vf
pk; 

m, 𝜎

0/1



SIGNATURE SECURITY

 Correctness:

 For all tuples 𝑠𝑘, 𝑝𝑘 ← KGen(1𝜆) and for all messages 

𝑚 ∈ 𝕄, it must hold that Vf 𝑝𝑘;𝑚, Sign 𝑠𝑘;𝑚 = 1

 Sometimes we degrade it to 𝜖-correctness in which the 

verification of a signed message fails with probability 𝜖

 EUF-CMA: adversary can’t forge fresh signature

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑚 , 𝜎 ←ASign(∗) (𝑝𝑘, 1𝜆)

Store list ℚ = { 𝑚1, 𝜎1 , … (𝑚𝑘 , 𝜎𝑘)} of queries to Sign

A wins iff. 𝑚, ∗ ∉ ℚ and Vf 𝑝𝑘;𝑚, 𝜎 = 1



RSA SIGNATURES

 RSA setup:

 Large primes 𝑝, 𝑞, let 𝑁 = 𝑝𝑞

 Subgroup of co-primes with 𝑁, size Φ 𝑁 = (𝑝 − 1)(𝑞 − 1)

 Work in subgroup mod Φ(𝑁)

 RSA signatures: 

 KGen: Find 𝑒 ∈𝑅 {1, … ,Φ 𝑁 } such that GCD(1,Φ(𝑁)) and its 

inverse 𝑑 such that 𝑒 ⋅ 𝑑 = 1 𝑚𝑜𝑑 Φ(𝑁)

 Public key 𝑃𝐾 = 𝑁, 𝑒 ; Secret key 𝑆𝐾 = 𝑑

 Sign message 𝑚:

 𝜎 = 𝑚𝑑 mod 𝑁

 Verify signature 𝜎 for message 𝑚

 Output 1 iff. 𝑚 = 𝜎𝑒 mod 𝑁 and output 0 otherwise



NOT EUF-CMA

 No Sign(⋅) queries:

 Pick random string 𝑠

 Compute ෝ𝑚 = 𝑠𝑒 mod 𝑁

 Output ( ෝ𝒎, 𝒔) as forgery

 Forgery with 2 queries:

 Want to forge signature for 

given message 𝑚

 Pick 𝑚1 at random, ask 

signature: 𝜎1 = 𝑚1
𝑑 mod 𝑁

 Compute 𝑚2 s.t. 𝑚1𝑚2 =
𝑚mod 𝑁, get 𝜎2 = 𝑚2

𝑑 mod 𝑁

 Output (𝒎, 𝝈𝟏𝝈𝟐 𝐦𝐨𝐝 𝑵)

RSA Signature

• Key Generation:

𝑝𝑘 = 𝑁, 𝑒 𝑠𝑘 = 𝑑

• Sign:

σ = 𝑚𝑑 𝑚𝑜𝑑 𝑁

• Verify:

𝑚 = 𝜎𝑒 𝑚𝑜𝑑 𝑁?



HOW TO GET EUF-CMA

 Use Hash functions, and sign hash of message

 The Probabilistic Full-Domain-Hash RSA scheme:

 Use a hash function 𝐻: 0,1 ∗ → ℤ𝑁
∗

 KGen: Obtain 𝑁, 𝑒, 𝑑 ← KGen𝑅𝑆𝐴(1
𝜆), set:

𝑃𝐾 = (𝑁, 𝑒);  𝑆𝐾 = 𝑑

 Sign: Choose random 𝑟 ∈$ 0,1 ∗, compute y = 𝐻 𝑟 | 𝑚), 
output signature: 

𝜎 = (𝑟, 𝑦𝑑 mod 𝑁)

 Verification: receive 𝑚,𝜎 = (𝑟, 𝑠), output 1 iff.

𝑠𝑒 = 𝐻 𝑟 | 𝑚)



SECURITY OF PFDH-RSA

 Assumptions on hash functions:

 Collision-resistance sometimes suffices

 However, proofs for signatures are hard to do relying 

just on collision resistance

 Need a stronger assumption

 Random oracles, the ROM:

 Imagine an idealization of a hash function

 Every time we query the idealization on a value 𝑥, 

check RO has not been queried with 𝑥 before:

 If so, output new uniformly random value of good length 

 Else output previously seen value for 𝑥



RSA ASSUMPTION

 The RSA problem:

 Given an RSA instance, with public key (𝑁, 𝑒)

 Given “ciphertext”: 𝐶 = 𝑚𝑒 mod 𝑁

 Compute 𝑚

 The RSA assumption:

 The RSA problem is hard to solve for a PPT adversary

 The strong RSA assumption:

 Alow Adversary to choose exponent 𝑒

 Given (𝑁, 𝐶), hard to output (𝑚, 𝑒) s.t. 𝐶 = 𝑚𝑒 mod 𝑁



SECURITY OF PFDH

 Theorem:

 Take 𝑟 = Log 𝑞𝑆

 In the random oracle model

 If there exists an adversary A against the EUF-CMA 

of the PFDH scheme, making at most 𝑞𝐻 queries to 𝐻
and at most 𝑞𝑆 queries to Sign, winning with 

probability 𝑝𝐴…

 Then there exists an adversary B that solves the RSA 

problem with probability 

𝑝𝐵 ≥
1

4
𝑝𝐴



PROGRAMMING A RO

 Key observations:

 A does not have much use submitting messages to Sign 

oracle without submitting them to Hashing RO first

 Not entirely true, we would lose a guessing term here

 A cannot output a meaningful forgery for a message 𝑚
without submitting it to Hashing RO first

 Again, not entirely true, same considerations as before

 A has no use querying the same message twice to the 

random oracle (since the RO always returns the same 

thing)



SECURITY PROOF FOR PFDH-RSA

 Proof intuition:

 The random oracle randomizes the messages to be 

signed; in fact, by choosing different values of 𝑟 we 

get different values of 𝐻 𝑟 𝑚

 Multiple related signatures per message:

 𝑚
𝑟1

𝑟1, [𝐻 𝑟1 𝑚)]𝑑 mod 𝑁)

 𝑚
𝑟2

𝑟2, [𝐻 𝑟2 𝑚)]𝑑 mod 𝑁)

 ………………

 𝑚
𝑟𝑘

𝑟𝑘 , [𝐻 𝑟𝑘 𝑚)]𝑑 mod 𝑁)

 Because of the RO, all hashes are different



CONSTRUCTING THE REDUCTION

 Adversary B plays the RSA problem

 It needs to simulate the EUF-CMA game to  

adversary A, and use its output

 Setup:

 Adversary B receives tuple 𝑁, 𝑒 and 𝐶 = 𝑚𝑒 mod 𝑁
for some 𝑚

 B must then answer queries from A for signatures

 B prepares for each 𝑚 a list of 𝑞𝑆 values like this:

 Choose random 𝑟𝑖
 Choose random 𝑥𝑖 < 𝑁

 Given 𝑒 calculate: 𝑧𝑖 = 𝑥𝑖
𝑒

 Store tuple (𝑚, 𝑟𝑖 , 𝑥𝑖 , 𝑧𝑖); all tuples with same 𝑚 make up 𝐿𝑚



THE REDUCTION

 Every time A queries the RO 𝐻 𝑚 | 𝑟), B responds 

as follows:

 Create initially empty table 𝕋 with entries (⋅,⋅,⋅)

 If 𝑚 is queried for the first time, B first makes up 𝐿𝑚
 Else, assume 𝐿𝑚 is already created

 If there exists in 𝕋 an entry 𝑚 | 𝑟, 𝑥, 𝑧), return 𝑧

 If 𝑟 ∈ 𝑟1, … , 𝑟𝑘 from list 𝐿𝑚, then output 𝑧𝑖 and insert in 𝕋
an entry 𝑚 | 𝑟𝑖 , 𝑥𝑖 , 𝑧𝑖)

 Else, if 𝑟 not used in 𝐿𝑚, choose random 𝑥 and output to A 

the value 𝑧 = 𝐶 𝑥𝑒 𝑚𝑜𝑑 𝑁 and store  𝑚 | 𝑟, 𝑥, 𝑧) in 𝕋

 Remember A has 𝑞𝑆 signature queries



FINISHING THE REDUCTION

 Apart from RO queries, A can ask signature 

queries to the signing oracle

 B has to respond to these queries

 When A queries Sign(𝑚):

 If 𝑚 does not have a corresponding 𝐿𝑚, generate it

 Else, pick the next value of 𝑟 in that list, see if there 

is a related entry 𝑚 | 𝑟, 𝑥, 𝑧) in 𝕋, output (𝑟, 𝑥)

 If there is no such related entry, create one, and 

output the same thing



WINNING OR LOSING

 Finally A outputs a forgery of the type:

(𝑚, (𝑟, 𝑠))
 If 𝑟 ∈ 𝐿𝑚, abort

 Else, if 𝑟 ∉ 𝐿𝑚, find corresponding entry in 𝕋 and output (to 
B’s challenger):

𝑠

𝑥
mod 𝑁

 Note: A outputs forgery on message not queried to 
signature oracle before

 But he could have input 𝑚 | 𝑟) to RO instead, got 𝑥

 Only way to get 𝑟 from 𝐿𝑚 is by guessing it:

Total probability it doesn’t happen: (1 − 2− 𝑟 )𝑞𝑆



RANDOM ORACLES

 Idealising hash function in a very useful way

 Can get nice properties for key-exchange, encryption, 

signatures, and many other primitives

 However, random oracles are a bit too ideal

 We know that some primitives that are “secure” in 

the presence of random oracles are insecure no 

matter which hash function we use for our RO

 Proofs in ROM:

 Tricky bit is to program the RO: store queries, know 

what to answer

 Alternative to ROM: standard model



FULL-DOMAIN HASHING

 Generalized beyond RSA by trapdoor permutations

 Trapdoor permutations:

 Family of 1-way permutations {𝑓𝐾: 𝐷𝑘 → 𝑅𝑘} with 𝐾 ∈ 𝕂, 

such that 𝐷𝐾 , 𝑅𝑘, 𝕂 are binary sets of arbitrary length. 

Includes algorithms (Gen, Sample, 𝑓, 𝑓−1) such that:

 Gen: on input 1𝜆 outputs tuple 𝐾 ∈ 𝕂 and trapdoor 𝑇

 Sample: on input the key 𝐾, this algorithm efficiently samples 

input 𝑥 ∈ 𝐷𝐾
 𝑓: on input 𝐾 and any 𝑥 ∈ 𝐷𝐾, efficiently outputs y = 𝑓𝐾(𝑥)

 𝑓−1 : on input 𝐾, trapdoor 𝑇 and any 𝑦 ∈ 𝑅𝐾, efficiently outputs 

inverse 𝑥 such that 𝑦 = 𝑓𝐾(𝑥)

 Security: without trapdoor 𝑇, hard to invert 𝑓



PKE AS TRAPDOOR PERMUTATION

Trapdoor permutation

• Algorithm Gen

𝐾 𝑇

• Function 𝑓: efficient to get

𝑦 = 𝑓𝐾(𝑥)

• Inverse 𝑓−1 easy with 𝑇

𝑥 = 𝑓𝐾
−1(𝑇, 𝑦)

PKE

• Algorithm KGen

𝑃𝐾 𝑆𝐾

• Encryption algorithm

𝑦 = Enc𝑃𝐾(𝑥)

• Decryption algorithm

𝑥 = 𝐷𝑒𝑐𝑆𝐾(𝑦)



GENERALIZED FDH

 Take Trapdoor permutation TDP = {Gen, Sample, 𝑓, 𝑓−1}

 Take hash function 𝐻: 0,1 ∗ → 0,1 𝑛

 Key Generation: Run 𝐾, 𝑇 ← Gen(1𝜆). Set:

𝑃𝐾 ≔ 𝐾 and   𝑆𝐾 = 𝑇

 Signing: Compute 𝑟 ≔ 𝐻(𝑚), then do: 𝑦 ≔ Sample (𝑃𝐾; 𝑟)

Signature is:  𝜎 = 𝑓𝑇
−1 (𝑦)

 Verification: Do 𝑟 ≔ 𝐻(𝑚), then: 𝑦 ≔ Sample (𝑃𝐾; 𝑟).

Output 1 iff. 𝑓 𝜎 = 𝑦


