
PUBLIC KEY CRYPTOGRAPHY: 

ENCRYPTION, SIGNATURES, FDH

The ROM, FDH, using the ROM



FROM PREVIOUS LECTURE

 Ciphers 

 Stream ciphers : many follow OTP + PRG strategy

 Block ciphers : work on plaintext of limited size = block

output ciphertexts of same size

 Modes of operation : used to encrypt longer messages

 Hash functions 

 Basic properties : first/second preimage resistance, 

collision resistance

 Can be used to construct primitives like HMacs



PART I

BACKGROUND



DIVISORS, PRIMES, GCD

 Assume: positive integers 𝑎, 𝑏 ∈ ℕ

 Division: “𝑎 divides 𝑏” iff. ∃ 𝑘 ∈ ℕ s.t. 𝑎 = 𝑘 ∙ 𝑏

 We write 𝑎 | 𝑏 and say 𝑎 is a divisor of 𝑏

 Examples: 2 | 24 , 11 | 121 , etc.

 Prime numbers: positive integers greater than 1 only 

divisible by 1 and themselves

 1 is not a prime number. Nor is 0.

 Modular arithmetic: remainder of division

 𝑎 mod 𝑏 = 𝑟 s.t. ∃ 𝑘 ∈ ℤ with 𝑎 = 𝑘𝑏 + 𝑟 and 𝑟 ∈ ℕ

 E.g. 15 mod 2 = 1; 235 mod 5 = 0; 135 mod 11 = 3



EQUIVALENCE CLASSES, GCD 

 Equivalence mod 𝑛: 

 𝑎 ≅𝑛 𝑏 iff. 𝑎 mod 𝑛 = 𝑏 mod 𝑛

 Equivalence classes 𝑎𝑛:

 𝑎𝑛 = 𝑏 ∈ ℤ 𝑎 ≅𝑛 𝑏}

 For instance 312 = {…− 12, 3, 15, 27, … }

 Common divisor: 𝑑 is common divisor of 𝑎, 𝑏 iff.:

 𝑑 | 𝑎 and 𝑑 | 𝑏

 Greatest common divisor: largest such 𝑑

 GCD 15,35 = 5

 GCD 52, 236 = 4



FINDING GCD

 If 𝑎 ≥ 𝑏, it holds that: GCD 𝑎, 𝑏 = GCD(𝑏, 𝑎 mod 𝑏)

 This is because if 𝑑 | 𝑎 and 𝑑 | 𝑏, then 𝑑 | (𝑎 mod 𝑏)

 Why? Write 𝑎 = 𝑏𝑞 + 𝑟, 𝑎 = 𝑘𝑑, 𝑏 = 𝑠𝑑

Then 𝑘𝑑 = 𝑞𝑠𝑑 + 𝑟, so 𝑑 𝑘 − 𝑞𝑠 = 𝑟 and 𝑑 | 𝑟

 For any 𝑎 ≥ 𝑏 : if 𝑎 mod 𝑏 = 0 then GCD 𝑎, 𝑏 = 𝑏

 Hence Euclid’s algorithm, input 𝑎 ≥ 𝑏:

 1. if 𝑎 mod 𝑏 = 0, then output 𝑏

 2. else, repeat procedure on input (𝑏, 𝑎 mod 𝑏)

 Total complexity: O(log2 𝑎)



EXTENDED GCD

 Theorem:

 If 𝑑 = GCD(𝑎, 𝑏), then 𝑑 is the smallest positive integer for 

which there exist integers 𝑟. 𝑠 such that:

𝑑 = 𝑎𝑟 + 𝑏𝑠

 If 𝑑 = 1, 𝑎, 𝑏 are called co-prime

 Extended GCD: 

 Input 𝑎, 𝑏

 Output: 𝑑, 𝑟, 𝑠



GROUPS

 Set 𝔾, operator ∘ such that:

 Closure: ∀ 𝑎, 𝑏 ∈ 𝔾 it holds 𝑎 ∘ 𝑏 ∈ 𝔾

 Associativity: ∀ 𝑎, 𝑏, 𝑐 ∈ 𝔾 it holds 𝑎 ∘ 𝑏 ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐)

 Identity element: ∃ 𝑒 ∈ 𝔾, ∀𝑎 ∈ 𝔾 s.t.: 𝑎 ∘ 𝑒 = 𝑒 ∘ 𝑎 = 𝑎

 Inverse element: ∀𝑎 ∃𝑎−1 s.t.: 𝑎 ∘ 𝑎−1 = 𝑎−1 ∘ 𝑎 = 𝑒

 (𝔾,∘) is an Abelian group iff:

 𝔾,∘ is a group

 ∀𝑎, 𝑏 ∈ 𝔾 ∶ 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎

 Example: ( 0,… , 𝑛 − 1 ,+(mod 𝑛) )
 Another example: (ℤ,∗ mod 𝑝)



SUBGROUPS AND ORDERS

 Order |𝔾| of group (𝔾,∘): # elements in 𝔾

 Subgroup (ℍ,∘) of 𝔾,∘ :

 ℍ,∘ is a group

 ℍ ⊆ 𝔾

 Theorem [Lagrange]: 

 If 𝔾 is finite and ℍ,∘ subgroup of (𝔾,∘)

 Then |ℍ| divides |𝔾|



CYCLIC GROUPS

 Cyclic groups (𝔾,∘) of order 𝑛 is cyclic iff.:

𝔾 = {𝑔, 𝑔 ∘ 𝑔,… , 𝑔 ∘ 𝑔 ∘ 𝑔…∘ 𝑔}

 We call 𝑔 a generator of this group

 Any element can be a generator

 Theorem [Fermat’s little theorem]:

 If (𝔾,∘) is a finite subgroup

 Then ∀ 𝑎 ∈ 𝔾 it holds that 𝑎|𝔾| = 1

n times



GROUPS AND SUBGROUPS WE USE

 For a prime 𝑝: (ℤ𝑝
∗ , ∗mod 𝑝)

 Integers modulo a prime, under multiplication mod p

 Abelian (multiplication is commutative)

 Variation: sometimes in ECC we use 𝐸(ℤ𝑝2 , +𝐸)

 For primes 𝑝, 𝑞: (𝔾,∗𝑁) with 𝑁 = 𝑝𝑞

 𝔾 = {1 ≤ 𝑔 ≤ 𝑁 − 1 s. t. GCD 𝑔,𝑁 = 1}

 Cardinality: # of numbers co-prime with 𝑁

 Usually denoted by Euler’s Φ function:

 Φ 𝑝𝑞 = (𝑝 − 1)(𝑞 − 1)

 E.g.: 𝑝 = 3; 𝑞 = 7; 𝔾 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}



PART II

ENCRYPTION SCHEMES



PUBLIC-KEY ENCRYPTION

 Syntax: algorithms (KGen, Enc, Dec) such that:

 KGen(1𝜆) : given security parameters, outputs tuple

(𝑠𝑘, 𝑝𝑘) consisting of a private/public key

 Enc(𝑝𝑘;𝑚) : given plaintext and public key, outputs 

ciphertext 𝑐

 Dec(𝑠𝑘; 𝑐) : given ciphertext and secret key, outputs 

plaintext ෝ𝑚 or error symbol ⊥

KGen

Enc

pksk

pk; mc

Dec
sk; c

m



PUBLIC-KEY ENCRYPTION

 Correctness:

 For all tuples 𝑠𝑘, 𝑝𝑘 ← KGen(1𝜆) and for all plaintexts 

𝑚 ∈ 𝕄, it must hold that 𝐷𝑒𝑐 𝑠𝑘; 𝐸𝑛𝑐 𝑝𝑘;𝑚 = 𝑚

 Sometimes we degrade it to 𝜖-correctness in which the 

decryption fails with probability 𝜖

 IND-CPA: eavesdropper can’t tell even 1 bit of p-text

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑏 ←$ 0,1

𝑚0 , 𝑚1 ←A (𝑝𝑘, 1𝜆)

𝑐 ← Enc(𝑝𝑘;𝑚𝑏)

𝑑 ←A(𝑐, 𝑝𝑘, 1𝜆)

A wins iff. 𝑑 = 𝑏



EL-GAMAL ENCRYPTION

 Before key-generation: setup

 Pick primes 𝑝, 𝑞 such that 𝑝 = 2𝑞 + 1

 Group ℍ = (ℤ𝑝
∗ ,∗mod 𝑝) and cyclic subgroup 𝔾 of ℍ of 

prime order 𝑞 under the same operation

 Generator 𝑔 of 𝔾

 Key generation:

 Secret key 𝑠𝑘 ←$ {1, … , 𝑞 − 1}; public key 𝑝𝑘 = 𝑔𝑠𝑘 mod 𝑝

 Encryption of message 𝑚 ∈ 𝔾:
 Pick 𝑟 ←$ {1,… , 𝑞 − 1}, set 𝑐 = (𝑔𝑟 mod 𝑝, 𝑚 ⋅ 𝑝𝑘𝑟 mod 𝑝)

 Decryption of 𝑐 = (𝑐1, 𝑐2):

 Set ෝ𝑚 = ൗ
𝑐2

𝑐1
𝑠𝑘



GENERIC MESSAGES

 Message has to be in 𝔾

 What happens otherwise?

 Could use 𝑚2, for 𝑚 ∈ ℍ ∖ 𝔾 (if 𝑚 ∈ ℍ ∖ 𝔾, then the order 

of 𝑚 is not 𝑞; yet, the order of 𝑚2 is 𝑞)      Proof in TD

 Encrypt 𝑚2 instead of 𝑚, take √ ෝ𝑚 at decryption

 Could also modify scheme a little bit, using a hash 

function:

 Encryption: (𝑔𝑟, 𝐻 𝑝𝑘𝑟 ⊕𝑚)

 Decryption: ෝ𝑚 = 𝑐2 ⊕𝐻(𝑐1
𝑠𝑘)

 We can prove security as long as the hash function 𝐻 preserves 

the pseudorandomness of 𝑝𝑘𝑟



EL-GAMAL SECURITY

 Theorem:

 If there exists an adversary A who can break the 

IND-CPA security of the El Gamal scheme with 

probability 
1

2
+ AdvA...

 ... then there exists an adversary B who can break 

the DDH assumption in group ℍ with probability 𝑝B
such that:

𝑝B =
1

2
+
1

2
AdvA



REMINDER: HARD PROBLEMS BASED ON DLOG

 Setup:

 Cyclic group 𝔾 of prime order 𝑞, generator 𝑔

 DLog:

 Given 𝑞, 𝑔, 𝑔𝑎, find 𝑎 ∈ {1,… 𝑞 − 1} (𝑔 and 𝑞 fully define 𝔾)

 CDH

 Given 𝑞, 𝑔, 𝑔𝑎 , 𝑔𝑏 find 𝑔𝑎𝑏

 DDH

 Given 𝑞, 𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑔𝑐 find out whether 𝑐 = 𝑎𝑏 or not

 Note: 

 If DLog is solved, then we can solve CDH

 If we can solve CDH, then we can solve DDH



PROOF

 What does breaking DDH mean?

 B plays a game against a challenger

 Depending on a bit 𝑏, B receives 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏 (if 𝑏 = 1) or 
(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐), for 𝑎, 𝑏, 𝑐 ←$ {1, … 𝑞}

 B must output a bit guess𝐵 and wins iff. guess𝐵 = 𝑏

 Constructing B that uses A

 Upon receiving tuple 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑧 with 𝑧 = 𝑎𝑏 or 𝑧 = 𝑐

 B gives A: (𝑔, 𝑝𝑘 = 𝑔𝑎)

 A chooses and sends B messages (𝑚0, 𝑚1)

 B chooses a bit 𝑏∗, outputs (𝑔𝑏, 𝑔𝑧 ⋅ 𝑚𝑏∗), send to A

 A outputs guess𝐴 and wins iff  guess𝐴 = 𝑏∗

 B outputs (guess𝐴 == 𝑏∗)



ANALYSIS

 Constructing B that uses A

 Upon receiving tuple 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑧 with 𝑧 = 𝑎𝑏 or 𝑧 = 𝑐

 B gives A: (𝑔, 𝑝𝑘 = 𝑔𝑎)

 A chooses and sends B messages (𝑚0, 𝑚1)

 B chooses a bit 𝑏∗, outputs (𝑔𝑏, 𝑔𝑧 ⋅ 𝑚𝑏∗), send to A

 A outputs guess𝐴 and wins iff  guess𝐴 = 𝑏∗

 B outputs (guess𝐴 == 𝑏∗)

 Analysis: 

 If b = 1, B got 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏 , which means A plays the 

true game: so A wins w.p. 
1

2
+ Adv𝐴

 If b = 0, B got 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐 , so A wins w.p. 
1

2



MALLEABILITY

 Malleability, to maul:

 Informally: ability to “re-shape” things

 Not always bad – crucial in homomorphic crypto

 Bad for IND-CCA

 ElGamal is malleable:

 Say we encrypt message 𝑚 with randomness 𝑟
𝑐1, 𝑐2 = (𝑔𝑟 , 𝑚 ⋅ 𝑝𝑘𝑟)

 Now pick random 𝑠 ←$ 1,… , 𝑞 − 1

 Maul ciphertext: 𝑐1
∗ = 𝑐1

𝑠 = 𝑔𝑟𝑠,  𝑐2
∗ = 𝑐2

𝑠 = 𝑚𝑠 𝑝𝑘𝑟𝑠

 Then (𝑐1
∗, 𝑐2

∗) is an encryption of 𝑚𝑠



IND-CPA VS IND-CCA

 IND-CPA: eavesdropper can’t tell even 1 bit of p-text

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑏 ←$ 0,1

𝑚0 , 𝑚1 ←A (𝑝𝑘, 1𝜆)

𝑐 ← Enc(𝑝𝑘;𝑚𝑏)

𝑑 ←A(𝑐, 𝑝𝑘, 1𝜆)

A wins iff. 𝑑 = 𝑏

 IND-CCA: even if we have power of decryption, 

can’t learn even 1 bit of fresh message

 Same as before, but include Dec. oracle

 A must not query challege ciphertext to Dec.



MALLEABILITY AND IND-CCA

 Malleability informally means that one can use a 

relation on the input to induce a relation on the 

output.

 Malleability usually implies encrpytion scheme is 

not IND-CCA

 Why?

 Key to IND-CCA success: A cannot query the challenge 

ciphertext

 Maul challenge ciphertext, then query it to Dec

 Perform inverse transformation



IND-CCA ENCRYPTION

 Much harder to get than IND-CPA encryption

 Must prevent malleability, so usually we would use 

something to verify the integrity of the message

 Would using a hash function help?

 Enc(𝑝𝑘,𝐻(𝑚)) : doesn’t work. Why not?

 How about 𝐻(Enc(𝑝𝑘; 𝑚))? 

 Could we use a PRF instead?

 Enc(𝑝𝑘, PRF(𝐾,𝑚)): security is ok, but why would we do 

PKE if we already had a shared key?



PART III

SIGNATURE SCHEMES



DIGITAL SIGNATURES

 Syntax: algorithms (KGen, Enc, Dec) such that:

 KGen(1𝜆) : given security parameters, outputs tuple

(𝑠𝑘, 𝑝𝑘) consisting of a private/public key

 Sign(𝑠𝑘;𝑚) : given plaintext and secret key, outputs 

signature  𝜎

 Vf(𝑝𝑘;𝑚, 𝜎) : given message, signature and public key,

outputs a bit 1 if 𝜎 checks for 𝑚, 0 otherwise

KGen

Sign

pksk

m, 𝜎sk, m

Vf
pk; 

m, 𝜎

0/1



SIGNATURE SECURITY

 Correctness:

 For all tuples 𝑠𝑘, 𝑝𝑘 ← KGen(1𝜆) and for all messages 

𝑚 ∈ 𝕄, it must hold that Vf 𝑝𝑘;𝑚, Sign 𝑠𝑘;𝑚 = 1

 Sometimes we degrade it to 𝜖-correctness in which the 

verification of a signed message fails with probability 𝜖

 EUF-CMA: adversary can’t forge fresh signature

𝑠𝑘, 𝑝𝑘 ← KGen (1𝜆)

𝑚 , 𝜎 ←ASign(∗) (𝑝𝑘, 1𝜆)

Store list ℚ = { 𝑚1, 𝜎1 , … (𝑚𝑘 , 𝜎𝑘)} of queries to Sign

A wins iff. 𝑚, ∗ ∉ ℚ and Vf 𝑝𝑘;𝑚, 𝜎 = 1



RSA SIGNATURES

 RSA setup:

 Large primes 𝑝, 𝑞, let 𝑁 = 𝑝𝑞

 Subgroup of co-primes with 𝑁, size Φ 𝑁 = (𝑝 − 1)(𝑞 − 1)

 Work in subgroup mod Φ(𝑁)

 RSA signatures: 

 KGen: Find 𝑒 ∈𝑅 {1, … ,Φ 𝑁 } such that GCD(1,Φ(𝑁)) and its 

inverse 𝑑 such that 𝑒 ⋅ 𝑑 = 1 𝑚𝑜𝑑 Φ(𝑁)

 Public key 𝑃𝐾 = 𝑁, 𝑒 ; Secret key 𝑆𝐾 = 𝑑

 Sign message 𝑚:

 𝜎 = 𝑚𝑑 mod 𝑁

 Verify signature 𝜎 for message 𝑚

 Output 1 iff. 𝑚 = 𝜎𝑒 mod 𝑁 and output 0 otherwise



NOT EUF-CMA

 No Sign(⋅) queries:

 Pick random string 𝑠

 Compute ෝ𝑚 = 𝑠𝑒 mod 𝑁

 Output ( ෝ𝒎, 𝒔) as forgery

 Forgery with 2 queries:

 Want to forge signature for 

given message 𝑚

 Pick 𝑚1 at random, ask 

signature: 𝜎1 = 𝑚1
𝑑 mod 𝑁

 Compute 𝑚2 s.t. 𝑚1𝑚2 =
𝑚mod 𝑁, get 𝜎2 = 𝑚2

𝑑 mod 𝑁

 Output (𝒎, 𝝈𝟏𝝈𝟐 𝐦𝐨𝐝 𝑵)

RSA Signature

• Key Generation:

𝑝𝑘 = 𝑁, 𝑒 𝑠𝑘 = 𝑑

• Sign:

σ = 𝑚𝑑 𝑚𝑜𝑑 𝑁

• Verify:

𝑚 = 𝜎𝑒 𝑚𝑜𝑑 𝑁?



HOW TO GET EUF-CMA

 Use Hash functions, and sign hash of message

 The Probabilistic Full-Domain-Hash RSA scheme:

 Use a hash function 𝐻: 0,1 ∗ → ℤ𝑁
∗

 KGen: Obtain 𝑁, 𝑒, 𝑑 ← KGen𝑅𝑆𝐴(1
𝜆), set:

𝑃𝐾 = (𝑁, 𝑒);  𝑆𝐾 = 𝑑

 Sign: Choose random 𝑟 ∈$ 0,1 ∗, compute y = 𝐻 𝑟 | 𝑚), 
output signature: 

𝜎 = (𝑟, 𝑦𝑑 mod 𝑁)

 Verification: receive 𝑚,𝜎 = (𝑟, 𝑠), output 1 iff.

𝑠𝑒 = 𝐻 𝑟 | 𝑚)



SECURITY OF PFDH-RSA

 Assumptions on hash functions:

 Collision-resistance sometimes suffices

 However, proofs for signatures are hard to do relying 

just on collision resistance

 Need a stronger assumption

 Random oracles, the ROM:

 Imagine an idealization of a hash function

 Every time we query the idealization on a value 𝑥, 

check RO has not been queried with 𝑥 before:

 If so, output new uniformly random value of good length 

 Else output previously seen value for 𝑥



RSA ASSUMPTION

 The RSA problem:

 Given an RSA instance, with public key (𝑁, 𝑒)

 Given “ciphertext”: 𝐶 = 𝑚𝑒 mod 𝑁

 Compute 𝑚

 The RSA assumption:

 The RSA problem is hard to solve for a PPT adversary

 The strong RSA assumption:

 Alow Adversary to choose exponent 𝑒

 Given (𝑁, 𝐶), hard to output (𝑚, 𝑒) s.t. 𝐶 = 𝑚𝑒 mod 𝑁



SECURITY OF PFDH

 Theorem:

 Take 𝑟 = Log 𝑞𝑆

 In the random oracle model

 If there exists an adversary A against the EUF-CMA 

of the PFDH scheme, making at most 𝑞𝐻 queries to 𝐻
and at most 𝑞𝑆 queries to Sign, winning with 

probability 𝑝𝐴…

 Then there exists an adversary B that solves the RSA 

problem with probability 

𝑝𝐵 ≥
1

4
𝑝𝐴



PROGRAMMING A RO

 Key observations:

 A does not have much use submitting messages to Sign 

oracle without submitting them to Hashing RO first

 Not entirely true, we would lose a guessing term here

 A cannot output a meaningful forgery for a message 𝑚
without submitting it to Hashing RO first

 Again, not entirely true, same considerations as before

 A has no use querying the same message twice to the 

random oracle (since the RO always returns the same 

thing)



SECURITY PROOF FOR PFDH-RSA

 Proof intuition:

 The random oracle randomizes the messages to be 

signed; in fact, by choosing different values of 𝑟 we 

get different values of 𝐻 𝑟 𝑚

 Multiple related signatures per message:

 𝑚
𝑟1

𝑟1, [𝐻 𝑟1 𝑚)]𝑑 mod 𝑁)

 𝑚
𝑟2

𝑟2, [𝐻 𝑟2 𝑚)]𝑑 mod 𝑁)

 ………………

 𝑚
𝑟𝑘

𝑟𝑘 , [𝐻 𝑟𝑘 𝑚)]𝑑 mod 𝑁)

 Because of the RO, all hashes are different



CONSTRUCTING THE REDUCTION

 Adversary B plays the RSA problem

 It needs to simulate the EUF-CMA game to  

adversary A, and use its output

 Setup:

 Adversary B receives tuple 𝑁, 𝑒 and 𝐶 = 𝑚𝑒 mod 𝑁
for some 𝑚

 B must then answer queries from A for signatures

 B prepares for each 𝑚 a list of 𝑞𝑆 values like this:

 Choose random 𝑟𝑖
 Choose random 𝑥𝑖 < 𝑁

 Given 𝑒 calculate: 𝑧𝑖 = 𝑥𝑖
𝑒

 Store tuple (𝑚, 𝑟𝑖 , 𝑥𝑖 , 𝑧𝑖); all tuples with same 𝑚 make up 𝐿𝑚



THE REDUCTION

 Every time A queries the RO 𝐻 𝑚 | 𝑟), B responds 

as follows:

 Create initially empty table 𝕋 with entries (⋅,⋅,⋅)

 If 𝑚 is queried for the first time, B first makes up 𝐿𝑚
 Else, assume 𝐿𝑚 is already created

 If there exists in 𝕋 an entry 𝑚 | 𝑟, 𝑥, 𝑧), return 𝑧

 If 𝑟 ∈ 𝑟1, … , 𝑟𝑘 from list 𝐿𝑚, then output 𝑧𝑖 and insert in 𝕋
an entry 𝑚 | 𝑟𝑖 , 𝑥𝑖 , 𝑧𝑖)

 Else, if 𝑟 not used in 𝐿𝑚, choose random 𝑥 and output to A 

the value 𝑧 = 𝐶 𝑥𝑒 𝑚𝑜𝑑 𝑁 and store  𝑚 | 𝑟, 𝑥, 𝑧) in 𝕋

 Remember A has 𝑞𝑆 signature queries



FINISHING THE REDUCTION

 Apart from RO queries, A can ask signature 

queries to the signing oracle

 B has to respond to these queries

 When A queries Sign(𝑚):

 If 𝑚 does not have a corresponding 𝐿𝑚, generate it

 Else, pick the next value of 𝑟 in that list, see if there 

is a related entry 𝑚 | 𝑟, 𝑥, 𝑧) in 𝕋, output (𝑟, 𝑥)

 If there is no such related entry, create one, and 

output the same thing



WINNING OR LOSING

 Finally A outputs a forgery of the type:

(𝑚, (𝑟, 𝑠))
 If 𝑟 ∈ 𝐿𝑚, abort

 Else, if 𝑟 ∉ 𝐿𝑚, find corresponding entry in 𝕋 and output (to 
B’s challenger):

𝑠

𝑥
mod 𝑁

 Note: A outputs forgery on message not queried to 
signature oracle before

 But he could have input 𝑚 | 𝑟) to RO instead, got 𝑥

 Only way to get 𝑟 from 𝐿𝑚 is by guessing it:

Total probability it doesn’t happen: (1 − 2− 𝑟 )𝑞𝑆



RANDOM ORACLES

 Idealising hash function in a very useful way

 Can get nice properties for key-exchange, encryption, 

signatures, and many other primitives

 However, random oracles are a bit too ideal

 We know that some primitives that are “secure” in 

the presence of random oracles are insecure no 

matter which hash function we use for our RO

 Proofs in ROM:

 Tricky bit is to program the RO: store queries, know 

what to answer

 Alternative to ROM: standard model



FULL-DOMAIN HASHING

 Generalized beyond RSA by trapdoor permutations

 Trapdoor permutations:

 Family of 1-way permutations {𝑓𝐾: 𝐷𝑘 → 𝑅𝑘} with 𝐾 ∈ 𝕂, 

such that 𝐷𝐾 , 𝑅𝑘, 𝕂 are binary sets of arbitrary length. 

Includes algorithms (Gen, Sample, 𝑓, 𝑓−1) such that:

 Gen: on input 1𝜆 outputs tuple 𝐾 ∈ 𝕂 and trapdoor 𝑇

 Sample: on input the key 𝐾, this algorithm efficiently samples 

input 𝑥 ∈ 𝐷𝐾
 𝑓: on input 𝐾 and any 𝑥 ∈ 𝐷𝐾, efficiently outputs y = 𝑓𝐾(𝑥)

 𝑓−1 : on input 𝐾, trapdoor 𝑇 and any 𝑦 ∈ 𝑅𝐾, efficiently outputs 

inverse 𝑥 such that 𝑦 = 𝑓𝐾(𝑥)

 Security: without trapdoor 𝑇, hard to invert 𝑓



PKE AS TRAPDOOR PERMUTATION

Trapdoor permutation

• Algorithm Gen

𝐾 𝑇

• Function 𝑓: efficient to get

𝑦 = 𝑓𝐾(𝑥)

• Inverse 𝑓−1 easy with 𝑇

𝑥 = 𝑓𝐾
−1(𝑇, 𝑦)

PKE

• Algorithm KGen

𝑃𝐾 𝑆𝐾

• Encryption algorithm

𝑦 = Enc𝑃𝐾(𝑥)

• Decryption algorithm

𝑥 = 𝐷𝑒𝑐𝑆𝐾(𝑦)



GENERALIZED FDH

 Take Trapdoor permutation TDP = {Gen, Sample, 𝑓, 𝑓−1}

 Take hash function 𝐻: 0,1 ∗ → 0,1 𝑛

 Key Generation: Run 𝐾, 𝑇 ← Gen(1𝜆). Set:

𝑃𝐾 ≔ 𝐾 and   𝑆𝐾 = 𝑇

 Signing: Compute 𝑟 ≔ 𝐻(𝑚), then do: 𝑦 ≔ Sample (𝑃𝐾; 𝑟)

Signature is:  𝜎 = 𝑓𝑇
−1 (𝑦)

 Verification: Do 𝑟 ≔ 𝐻(𝑚), then: 𝑦 ≔ Sample (𝑃𝐾; 𝑟).

Output 1 iff. 𝑓 𝜎 = 𝑦


