

PUBLIC KEY CRYPTOGRAPHY: ENCRYPTION, SIGNATURES, FDH

The ROM, FDH, using the ROM

FROM PREVIOUS LECTURE

- Ciphers
 - Stream ciphers : many follow OTP + PRG strategy
 - Block ciphers : work on plaintext of limited size = block output ciphertexts of same size
 - Modes of operation : used to encrypt longer messages

> Hash functions

- Basic properties : first/second preimage resistance, collision resistance
- Can be used to construct primitives like HMacs

PART I BACKGROUND

DIVISORS, PRIMES, GCD

- > Assume: positive integers $a, b \in \mathbb{N}$
- ▶ Division: "a divides b" iff. $\exists k \in \mathbb{N} \text{ s.t. } a = k \cdot b$
 - We write *a* | *b* and say *a* is a divisor of *b*
- > Examples: 2 | 24, 11 | 121, etc.
- Prime numbers: positive integers greater than 1 only divisible by 1 and themselves
 - 1 is not a prime number. Nor is 0.
- Modular arithmetic: remainder of division
 - $a \mod b = r \text{ s.t. } \exists k \in \mathbb{Z} \text{ with } a = kb + r \text{ and } r \in \mathbb{N}$
 - E.g. 15 mod 2 = 1; 235 mod 5 = 0; 135 mod 11 = 3

EQUIVALENCE CLASSES, GCD

- > Equivalence mod *n*:
 - $a \cong_n b$ iff. $a \mod n = b \mod n$
- > Equivalence classes a_n :

•
$$a_n = \{b \in \mathbb{Z} \mid a \cong_n b\}$$

- For instance $3_{12} = \{\dots 12, 3, 15, 27, \dots\}$
- Common divisor: *d* is common divisor of *a*, *b* iff.:
 - $d \mid a \text{ and } d \mid b$
- Greatest common divisor: largest such d
 - GCD(15,35) = 5
 - GCD(52, 236) = 4

FINDING GCD

- > If $a \ge b$, it holds that: $GCD(a, b) = GCD(b, a \mod b)$
 - This is because if *d* | *a* and *d* | *b*, then *d* | (*a* mod *b*)
 - Why? Write *a* = *bq* + *r*, *a* = *kd*, *b* = *sd* Then *kd* = *qsd* + *r*, so *d*(*k qs*) = *r* and *d* | *r*

> For any $a \ge b$: if $a \mod b = 0$ then GCD(a, b) = b

- > Hence Euclid's algorithm, input $a \ge b$:
 - 1. if $a \mod b = 0$, then output b
 - 2. else, repeat procedure on input (b, a mod b)
- > Total complexity: $O(\log^2 a)$

EXTENDED GCD

- > Theorem:
 - If d = GCD(a, b), then d is the smallest positive integer for which there exist integers r.s such that:

$$d = ar + bs$$

- > If d = 1, a, b are called co-prime
- > Extended GCD:
 - Input *a*, *b*
 - Output: *d*,*r*,*s*

GROUPS

> Set G, operator • such that:

- Closure: $\forall a, b \in \mathbb{G}$ it holds $a \circ b \in \mathbb{G}$
- Associativity: $\forall a, b, c \in \mathbb{G}$ it holds $(a \circ b) \circ c = a \circ (b \circ c)$
- Identity element: $\exists e \in \mathbb{G}, \forall a \in \mathbb{G} \text{ s.t.}: a \circ e = e \circ a = a$
- Inverse element: $\forall a \exists a^{-1} \text{ s.t.: } a \circ (a^{-1}) = (a^{-1}) \circ a = e$

➤ (G, •) is an Abelian group iff:

- (G,•) is a group
- $\forall a, b \in \mathbb{G}$: $a \circ b = b \circ a$
- > Example: $(\{0, ..., n-1\}, +(\text{mod } n))$
 - Another example: $(\mathbb{Z}, * \mod p)$

SUBGROUPS AND ORDERS

- > Order |G| of group (G, •): # elements in G
- > Subgroup (\mathbb{H} , \circ) of (\mathbb{G} , \circ):
 - (ℍ,∘) is a group
 - $\mathbb{H} \subseteq \mathbb{G}$
- > Theorem [Lagrange]:
 - If G is finite and (H,•) subgroup of (G,•)
 - Then |H| divides |G|

CYCLIC GROUPS

> Cyclic groups (G, \circ) of order *n* is cyclic iff.: G = {g, g \circ g, ..., g \circ g \circ g, ... \circ g \circ g \circ g}

n times

- \succ We call g a generator of this group
- > Any element can be a generator
- > Theorem [Fermat's little theorem]:
 - If (G,•) is a finite subgroup
 - Then $\forall a \in \mathbb{G}$ it holds that $a^{|\mathbb{G}|} = 1$

GROUPS AND SUBGROUPS WE USE

> For a prime $p: (\mathbb{Z}_p^*, *_{\text{mod } p})$

- Integers modulo a prime, under multiplication mod p
- Abelian (multiplication is commutative)

> Variation: sometimes in ECC we use $(E(\mathbb{Z}_{p^2}), +_E)$

> For primes
$$p, q: (\mathbb{G}, *_N)$$
 with $N = pq$

- $\mathbb{G} = \{1 \le g \le N 1 \text{ s.t. } \text{GCD}(g, N) = 1\}$
- Cardinality: # of numbers co-prime with N
 Usually denoted by Euler's Φ function:
 Φ(pq) = (p 1)(q 1)

• E.g.: p = 3; q = 7; $\mathbb{G} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$

PART II ENCRYPTION SCHEMES

PUBLIC-KEY ENCRYPTION

Syntax: algorithms (KGen, Enc, Dec) such that:

- KGen (1^{λ}) : given security parameters, outputs tuple (sk, pk) consisting of a private/public key
- Enc(*pk*; *m*) : given plaintext and public key, outputs ciphertext *c*
- Dec(*sk*; *c*) : given ciphertext and secret key, outputs plaintext *m̂* or error symbol ⊥

PUBLIC-KEY ENCRYPTION

Correctness:

- For all tuples $(sk, pk) \leftarrow \text{KGen}(1^{\lambda})$ and for all plaintexts $m \in \mathbb{M}$, it must hold that Dec(sk; Enc(pk; m)) = m
- Sometimes we degrade it to ϵ -correctness in which the decryption fails with probability ϵ
- ► IND-CPA: eavesdropper can't tell even 1 bit of p-text $(sk, pk) \leftarrow \text{KGen}(1^{\lambda})$ $b \leftarrow_{\$} \{0,1\}$ $(m_0, m_1) \leftarrow \mathcal{A}(pk, 1^{\lambda})$ $c \leftarrow \text{Enc}(pk; m_b)$ $d \leftarrow \mathcal{A}(c, pk, 1^{\lambda})$

 \mathbf{A} wins iff. d = b

EL-GAMAL ENCRYPTION

> Before key-generation: setup

- Pick primes p, q such that p = 2q + 1
- Group ℍ = (ℤ_p^{*},*_{mod p}) and cyclic subgroup G of ℍ of prime order *q* under the same operation
- Generator g of \mathbb{G}

Key generation:

- Secret key $sk \leftarrow_{\$} \{1, \dots, q-1\}$; public key $pk = g^{sk} \mod p$

> Encryption of message $m \in \mathbb{G}$:

• Pick $r \leftarrow_{\$} \{1, \dots, q-1\}$, set $c = (g^r \mod p, m \cdot pk^r \mod p)$

> Decryption of $c = (c_1, c_2)$:

• Set
$$\widehat{m} = \frac{c_2}{c_1^{sk}}$$

GENERIC MESSAGES

- > Message has to be in G
- > What happens otherwise?
 - Could use m^2 , for $m \in \mathbb{H} \setminus \mathbb{G}$ (if $m \in \mathbb{H} \setminus \mathbb{G}$, then the order of *m* is not *q*; yet, the order of m^2 is *q*) **Proof in TD**

• Encrypt m^2 instead of m, take $\sqrt{\hat{m}}$ at decryption

- Could also modify scheme a little bit, using a hash function:
 - Encryption: $(g^r, H(pk^r) \oplus m)$
 - Decryption: $\widehat{m} = c_2 \bigoplus H(c_1^{sk})$
 - We can prove security as long as the hash function H preserves the pseudorandomness of pk^r

EL-GAMAL SECURITY

- > Theorem:
 - If there exists an adversary \mathcal{A} who can break the IND-CPA security of the El Gamal scheme with probability $\frac{1}{2}$ + Adv \mathcal{A} ...
 - ... then there exists an adversary *B* who can break the DDH assumption in group H with probability *pB* such that:

$$p_{\mathcal{B}} = \frac{1}{2} + \frac{1}{2} \operatorname{Adv}_{\mathcal{A}}$$

REMINDER: HARD PROBLEMS BASED ON DLOG

> Setup:

- Cyclic group G of prime order q, generator g
- > DLog:
 - Given q, g, g^a , find $a \in \{1, \dots, q-1\}$ (*g* and *q* fully define **G**)
- > CDH
 - Given q, g, g^a, g^b find g^{ab}

> DDH

• Given q, g, g^a, g^b, g^c find out whether c = ab or not

> Note:

- If DLog is solved, then we can solve CDH
- If we can solve CDH, then we can solve DDH

Proof

- > What does breaking DDH mean?
- B plays a game against a challenger
 - Depending on a bit b, B receives (g, g^a, g^b, g^{ab}) (if b = 1) or (g, g^a, g^b, g^c) , for $a, b, c \leftarrow_{\$} \{1, \dots, q\}$
 - B must output a bit $guess_B$ and wins iff. $guess_B = b$
- Constructing B that uses A
 - Upon receiving tuple (g, g^a, g^b, g^z) with z = ab or z = c
 - B gives A: $(g, pk = g^a)$
 - A chooses and sends B messages (m_0, m_1)
 - B chooses a bit b^* , outputs $(g^b, g^z \cdot m_{b^*})$, send to A
 - A outputs $guess_A$ and wins iff $guess_A = b^*$
 - B outputs (guess_A == b^*)

ANALYSIS

Constructing B that uses A

- Upon receiving tuple (g, g^a, g^b, g^z) with z = ab or z = c
- B gives A: $(g, pk = g^a)$
- A chooses and sends B messages (m_0, m_1)
- B chooses a bit b^* , outputs $(g^b, g^z \cdot m_{b^*})$, send to A
- A outputs guess_A and wins iff guess_A = b^*
- B outputs (guess_A == b^*)

> Analysis:

- If b = 1, B got (g, g^a, g^b, g^{ab}) , which means A plays the true game: so A wins w.p. $\frac{1}{2} + Adv_A$
- If b = 0, B got (g, g^a, g^b, g^c) , so A wins w.p. $\frac{1}{2}$

MALLEABILITY

- Malleability, to maul:
 - Informally: ability to "re-shape" things
 - Not always bad crucial in homomorphic crypto
 - Bad for IND-CCA
- ElGamal is malleable:
 - Say we encrypt message m with randomness r $(c_1, c_2) = (g^r, m \cdot pk^r)$
 - Now pick random $s \leftarrow_{\$} \{1, \dots, q-1\}$
 - Maul ciphertext: $c_1^* = c_1^s = g^{rs}, \ c_2^* = c_2^s = m^s \ pk^{rs}$
 - Then (c_1^*, c_2^*) is an encryption of m^s

IND-CPA vs IND-CCA

> IND-CPA: eavesdropper can't tell even 1 bit of p-text

 $(sk, pk) \leftarrow \text{KGen}(1^{\lambda})$ $b \leftarrow_{\$} \{0,1\}$ $(m_0, m_1) \leftarrow \mathcal{A}(pk, 1^{\lambda})$ $c \leftarrow \text{Enc}(pk; m_b)$ $d \leftarrow \mathcal{A}(c, pk, 1^{\lambda})$ $\mathcal{A} \text{ wins iff. } d = b$

- > IND-CCA: even if we have power of decryption, can't learn even 1 bit of fresh message
 - Same as before, but include Dec. oracle
 - A must not query challege ciphertext to Dec.

MALLEABILITY AND IND-CCA

- Malleability informally means that one can use a relation on the input to induce a relation on the output.
- Malleability usually implies encryption scheme is not IND-CCA
- > Why?
 - Key to IND-CCA success: A cannot query the challenge ciphertext
 - Maul challenge ciphertext, then query it to Dec
 - Perform inverse transformation

IND-CCA ENCRYPTION

- > Much harder to get than IND-CPA encryption
- Must prevent malleability, so usually we would use something to verify the integrity of the message
- > Would using a hash function help?
 - Enc(*pk*, *H*(*m*)) : doesn't work. Why not?
 - How about H(Enc(pk; m))?
- Could we use a PRF instead?
 - Enc(*pk*, PRF(*K*, *m*)): security is ok, but why would we do PKE if we already had a shared key?

PART III SIGNATURE SCHEMES

DIGITAL SIGNATURES

> Syntax: algorithms (KGen, Enc, Dec) such that:

- KGen (1^{λ}) : given security parameters, outputs tuple (sk, pk) consisting of a private/public key
- Sign(sk; m) : given plaintext and secret key, outputs signature σ
- Vf(*pk*; *m*, σ) : given message, signature and public key, outputs a bit 1 if σ checks for *m*, 0 otherwise

SIGNATURE SECURITY

Correctness:

- For all tuples $(sk, pk) \leftarrow \text{KGen}(1^{\lambda})$ and for all messages $m \in \mathbb{M}$, it must hold that Vf(pk; m, Sign(sk; m)) = 1
- Sometimes we degrade it to ϵ -correctness in which the verification of a signed message fails with probability ϵ
- EUF-CMA: adversary can't forge fresh signature

 (sk, pk) ← KGen (1^λ)
 (m, σ) ← A^{Sign(*)} (pk, 1^λ)
 Store list Q = {(m₁, σ₁), ... (m_k, σ_k)} of queries to Sign
 A wins iff. (m, *) ∉ Q and Vf(pk; m, σ) = 1

RSA SIGNATURES

> RSA setup:

- Large primes p, q, let N = pq
- Subgroup of co-primes with N, size $\Phi(N) = (p-1)(q-1)$
- Work in subgroup mod $\Phi(N)$
- > RSA signatures:
 - <u>KGen</u>: Find $e \in_R \{1, ..., \Phi(N)\}$ such that $GCD(1, \Phi(N))$ and its inverse d such that $e \cdot d = 1 \mod \Phi(N)$

• Public key PK = (N, e); Secret key SK = d

- <u>Sign</u> message *m*:
 - $\sigma = m^d \mod N$
- Verify signature σ for message m

• Output 1 iff. $m = \sigma^e \mod N$ and output 0 otherwise

NOT EUF-CMA

RSA Signature

• Key Generation:

pk = N, e

$$sk = d$$

• Sign:

 $\sigma = m^d \mod N$

• Verify:

$$m \stackrel{?}{\doteq} \sigma^e \mod N$$

- No Sign(·) queries:
 - Pick random string *s*
 - Compute $\widehat{m} = s^e \mod N$
 - Output (\hat{m}, s) as forgery
- Forgery with 2 queries:
 - Want to forge signature for given message *m*
 - Pick m_1 at random, ask signature: $\sigma_1 = m_1^d \mod N$
 - Compute m_2 s.t. $m_1m_2 = m \mod N$, get $\sigma_2 = m_2^d \mod N$
 - Output $(m, \sigma_1 \sigma_2 \mod N)$

HOW TO GET EUF-CMA

- > Use Hash functions, and sign hash of message
- > The Probabilistic Full-Domain-Hash RSA scheme:
 - Use a hash function $H: \{0,1\}^* \to \mathbb{Z}_N^*$
 - <u>KGen</u>: Obtain $(N, e, d) \leftarrow \text{KGen}_{RSA}(1^{\lambda})$, set:

$$PK = (N, e); SK = d$$

• <u>Sign</u>: Choose random $r \in \{0,1\}^*$, compute y = H(r | | m), output signature:

 $\sigma = (r, y^d \bmod N)$

• <u>Verification</u>: receive $m, \sigma = (r, s)$, output 1 iff. $s^e = H(r | | m)$

SECURITY OF PFDH-RSA

- > Assumptions on hash functions:
 - Collision-resistance sometimes suffices
 - However, proofs for signatures are hard to do relying just on collision resistance
 - Need a stronger assumption

> Random oracles, the ROM:

- Imagine an idealization of a hash function
- Every time we query the idealization on a value *x*, check RO has not been queried with *x* before:
 - If so, output new uniformly random value of good length
 - Else output previously seen value for x

RSA ASSUMPTION

- > The RSA problem:
 - Given an RSA instance, with public key (*N*, *e*)
 - Given "ciphertext": $C = m^e \mod N$
 - Compute *m*
- > The RSA assumption:
 - The RSA problem is hard to solve for a PPT adversary
- > The strong RSA assumption:
 - Alow Adversary to choose exponent *e*
 - Given (N, C), hard to output (m, e) s.t. $C = m^e \mod N$

SECURITY OF PFDH

- > Theorem:
 - Take $|r| = \text{Log } q_S$
 - In the random oracle model
 - If there exists an adversary A against the EUF-CMA of the PFDH scheme, making at most q_H queries to H and at most q_S queries to Sign, winning with probability $p_A...$
 - Then there exists an adversary B that solves the RSA problem with probability

$$p_B \ge \frac{1}{4} p_A$$

PROGRAMMING A RO

> Key observations:

- A does not have much use submitting messages to Sign oracle without submitting them to Hashing RO first
 Not entirely true, we would lose a guessing term here
- A cannot output a meaningful forgery for a message m without submitting it to Hashing RO first
 Again, not entirely true, same considerations as before
- A has no use querying the same message twice to the random oracle (since the RO always returns the same thing)

SECURITY PROOF FOR PFDH-RSA

Proof intuition:

- The random oracle randomizes the messages to be signed; in fact, by choosing different values of r we get different values of H(r || m)
- Multiple related signatures per message:

$$\circ m \xrightarrow{r_1} (r_1, [H(r_1 \mid \mid m)]^d \mod N)$$

$$\circ m \xrightarrow{r_2} (r_2, [H(r_2 \mid \mid m)]^d \mod N)$$

•

$$\circ m \xrightarrow{r_k} (r_k, [H(r_k \mid \mid m)]^d \mod N)$$

Because of the RO, all hashes are different

CONSTRUCTING THE REDUCTION

- > Adversary B plays the RSA problem
- It needs to simulate the EUF-CMA game to adversary A, and use its output
- > Setup:
 - Adversary B receives tuple (N, e) and $C = m^e \mod N$ for some m
 - B must then answer queries from A for signatures
 - B prepares for each m a list of q_S values like this:
 - Choose random r_i
 - Choose random $x_i < N$
 - Given *e* calculate: $z_i = x_i^e$
 - Store tuple (m, r_i, x_i, z_i) ; all tuples with same *m* make up L_m

THE REDUCTION

- Every time A queries the RO H(m | | r), B responds as follows:
 - Create initially empty table \mathbb{T} with entries (\cdot, \cdot, \cdot)
 - If m is queried for the first time, B first makes up L_m
 - Else, assume L_m is already created
 - If there exists in \mathbb{T} an entry $(m \mid \mid r, x, z)$, return z
 - If $r \in \{r_1, ..., r_k\}$ from list L_m , then output z_i and insert in \mathbb{T} an entry $(m \mid \mid r_i, x_i, z_i)$
 - Else, if r not used in L_m, choose random x and output to A the value z = C x^e mod N and store (m | | r, x, z) in T

> Remember A has q_s signature queries

FINISHING THE REDUCTION

- > Apart from RO queries, A can ask signature queries to the signing oracle
 - B has to respond to these queries
- > When A queries Sign(m):
 - If m does not have a corresponding L_m , generate it
 - Else, pick the next value of r in that list, see if there is a related entry (m | | r, x, z) in T, output (r, x)
 - If there is no such related entry, create one, and output the same thing

WINNING OR LOSING

Finally A outputs a forgery of the type:

- If $r \in L_m$, abort
- Else, if *r* ∉ *L_m*, find corresponding entry in T and output (to B's challenger):

$$\frac{s}{x} \mod N$$

- Note: A outputs forgery on message not queried to signature oracle before
 - But he could have input (m | | r) to RO instead, got x
 - Only way to get r from L_m is by guessing it: Total probability it doesn't happen: $(1 - 2^{-|r|})^{q_s}$

RANDOM ORACLES

> Idealising hash function in a very useful way

• Can get nice properties for key-exchange, encryption, signatures, and many other primitives

> However, random oracles are a bit too ideal

 We know that some primitives that are "secure" in the presence of random oracles are insecure no matter which hash function we use for our RO

> Proofs in ROM:

- Tricky bit is to program the RO: store queries, know what to answer
- > Alternative to ROM: standard model

FULL-DOMAIN HASHING

Generalized beyond RSA by trapdoor permutations

> Trapdoor permutations:

- Family of 1-way permutations $\{f_K: D_k \to R_k\}$ with $K \in \mathbb{K}$, such that D_K, R_k , \mathbb{K} are binary sets of arbitrary length. Includes algorithms (Gen, Sample, f, f^{-1}) such that:
 - Gen: on input 1^{λ} outputs tuple $K \in \mathbb{K}$ and trapdoor T
 - Sample: on input the key K, this algorithm efficiently samples input $x \in D_K$
 - *f*: on input *K* and any $x \in D_K$, efficiently outputs $y = f_K(x)$
 - f^{-1} : on input *K*, trapdoor *T* and any $y \in R_K$, efficiently outputs inverse *x* such that $y = f_K(x)$
 - Security: without trapdoor T, hard to invert f

PKE AS TRAPDOOR PERMUTATION

Trapdoor permutation

• Algorithm Gen

• Function *f*: efficient to get

$$y = f_K(x)$$

• Inverse f^{-1} easy with T

$$x = f_K^{-1}(T, y)$$

PKE

• Algorithm KGen

• Encryption algorithm

$$y = \operatorname{Enc}_{PK}(x)$$

• Decryption algorithm

$$x = Dec_{SK}(y)$$

GENERALIZED FDH

➤ Take Trapdoor permutation TDP = {Gen, Sample, f, f⁻¹}
 ➤ Take hash function H: {0,1}* → {0,1}ⁿ

≻ Key Generation: Run $(K, T) \leftarrow \text{Gen}(1^{\lambda})$. Set: $PK \coloneqq K$ and SK = T

> Signing: Compute $r \coloneqq H(m)$, then do: $y \coloneqq$ Sample (*PK*; *r*) Signature is: $\sigma = f_T^{-1}(y)$

> Verification: Do $r \coloneqq H(m)$, then: $y \coloneqq$ Sample (*PK*; *r*). Output 1 iff. $f(\sigma) = y$