

PRPS AND PRFS

Block ciphers, cryptanalysis, symmetric encryption

PERFECTION AND IMPERFECTION

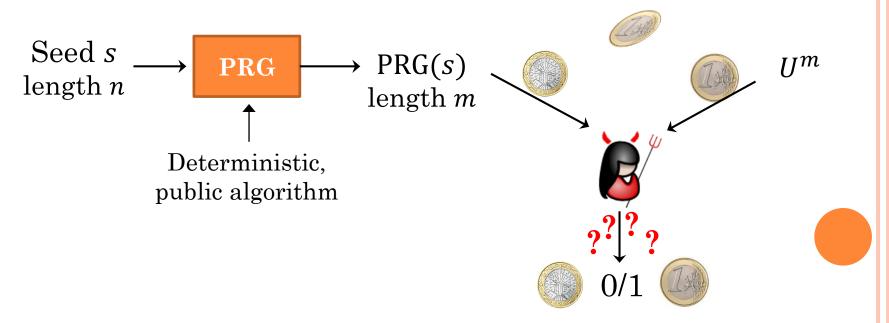
> OTP as perfect cipher:

- Prob[M=m | C = c] = Prob[M=m]
- The ciphertext hides all plaintexts with equal probability
- Perfect security, but size of key space is equal to size of message space
 - Unfortunately this is optimal
- Imperfect ciphers:
 - Goal: diminish key size while retaining some security
 - Consider limited adversaries and computational advantage
 - Using PRG instead of random key reduces key size
 - We rely on indistinguishability of PRG from true randomness

PSEUDORANDOM GENERATORS (PRG)

Principle: start from a small, random string (called a seed), get a larger string that looks random
 PRG : {0,1}ⁿ → {0,1}^m for m > n

Security: a "good" PRG outputs strings that are indistinguishable from random (by an adversary)



THE SECURE-PRG GAME

> $s \stackrel{\$}{\leftarrow} \{0,1\}^n$ $b \stackrel{\$}{\leftarrow} \{0,1\}$ $d \leftarrow \mathcal{A}^{Gen_b()}(m,n, PRG)$

 $\boldsymbol{\mathcal{A}}$ wins iff. b = d

 $\frac{Gen_b():}{\text{If } b = 1 \text{ then } x \stackrel{\$}{\leftarrow} U^m}$ Else $x \leftarrow PRG(s)$ Return x

- > Unbounded vs. bounded *A*
 - Unbounded: as many calls to Gen_b as \mathcal{A} wants
 - Bounded: only polynomially many calls, poly-runtime
 k-bounded: only *k* calls, poly-runtime
- (k, ε)-Secure PRG: G is a k-bounded-secure PRG if, and only if, any k-bounded adversary A wins w.p. at most ¹/₂ + ε
 - (asymptotically) k-secure: $\varepsilon \in \text{Negl}[n]$

PRG IN OTP

Recall the OTP

- Traditional OTP for $\mathcal{K} = \mathcal{M} = \{0,1\}^m$
 - Choose random $k \stackrel{\$}{\leftarrow} \mathscr{R}$
 - Encrypt message *m* to : $c \coloneqq k \oplus m$
 - Decrypt ciphertext c as: $\widehat{m} \coloneqq c \oplus k$

> Now replace random key generation by PRG:

- OTP for $\mathcal{M} = \{0,1\}^m$ with $\mathcal{K} = \{0,1\}^n$ and n < m
- Use a bounded-secure PRG $G: \{0,1\}^n \rightarrow \{0,1\}^m$
 - KeyGen: choose (once) $k \stackrel{\$}{\leftarrow} \boldsymbol{\mathscr{K}}$
 - Encrypt message m as $c \coloneqq G(k) \oplus m$
 - Decrypt message as: $\widehat{m} \coloneqq c \bigoplus G(k)$

STREAM AND BLOCK CIPHERS

STREAM CIPHERS

Based on pseudorandom generators

- Usually in the PRG + OTP structure, encrypting traffic as it is sent
- Note: symmetric in nature, and require synhronization for the masking string (output of PRG)
- > Some examples: SEAL, A5, RC4
 - If PRG is efficient (it usually is), the construction is very fast
 - RC4 is probably the most often used stream cipher today, but some of its output bytes are biased, leading to breaking WEP and TLS + RC4

RC4

- Designed by Ron Rivest in 1987
- > Used in protocols like TLS/SSL, WEP, etc.
- Starts with a key of 256 bytes: k₀, ... k₂₅₅ (if not long enough, we pad it with itself)
- Also need permutation on (byte) positions 0, ..., 255, denoted S, which is shuffled at each round

RC4 DESCRIPTION

> Initialization:

- $S_0 = 0; S_1 = 1; \dots S_{255} = 255$
- Key K_0 ; ... K_{255}
- Current index j = 0
- > Permutation of elements of *S*:
 - For *i* = 1 *to* 255:
 - $o j \coloneqq (j + S_i + K_i) \mod 256$
 - Swap S_i and S_j

> Output: byte S_r to XOR to next plaintext byte

- Update: $i = i + 1 \mod 256$ and $j = j + S_i \mod 256$
- Swap S_i and S_j
- Output S_r with $r = S_i + S_j \mod 256$

RC4 PROBLEMS

- > Ideally:
 - We want that the output bytes be uniformly random
 - Or at least, that they are indistinguishable from uniformly random, by a poly-time distinguisher
- > Bias in some of the bits:
 - Probability that first two bytes are 0 is $2^{-16} + 2^{-32}$
 - More attacks were recently published by Paterson et al.
 - At the moment RC4 is discouraged by TLS/SSL (but because it's efficient, it's still being used a lot)

BLOCK CIPHERS

- Stream ciphers pad plaintext with PRG output
 - Principle usually follows OTP
- Block ciphers act like a symmetric encryption on plaintext blocks
 - Idea: plaintext is a string of *n* bits, e.g. 64, or 128
 - A good permutation of the bits makes the output look unrelated to the input
- ➢ Given key K and message M of size n:
 - Encryption Enc_K maps M to a ciphertext C
 - Decryption Dec_K maps ciphertext to plaintext

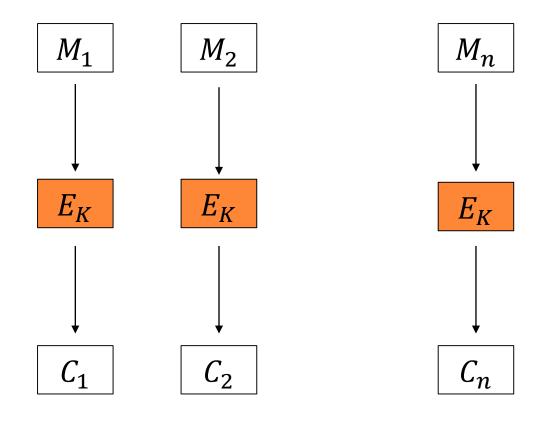
PERMUTATIONS AND PRPS

- > Ideally:
 - Use a truly random permutation on the input domain
 - However, that means we need a key as large as the message
- > In practice:
 - Use a pseudorandom permutation (PRP)
 - Then rely on indistinguishability of PRPs from RPs
 - The block cipher takes inputs of size *n* and returns output of same size

• If we need to encrypt bigger texts, use one of several modes

ECB MODE

> Very simple: encrypt each block separately:

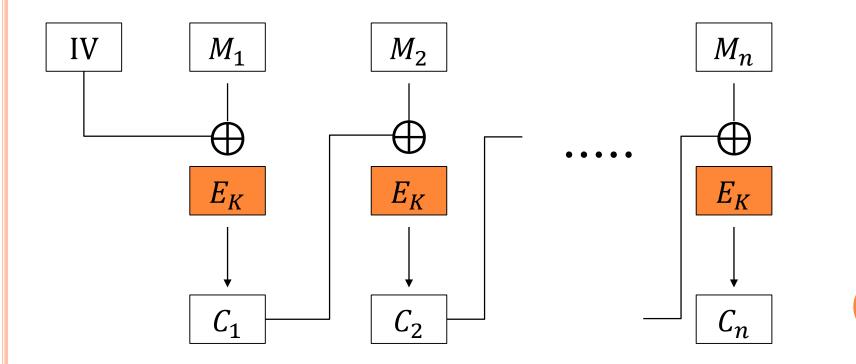


ECB PROPERTIES

- > Advantages
 - Highly efficient and not harder to implement securely than the single-block encryption method
 - Parallelizable
- > Security:
 - What happens if we have repetition in the input message? $(M_1, M_2 = M_1, M_3 ...)$
 - How about substitution/addition of message blocks?
 - Known for being insecure against active attackers

CBC MODE

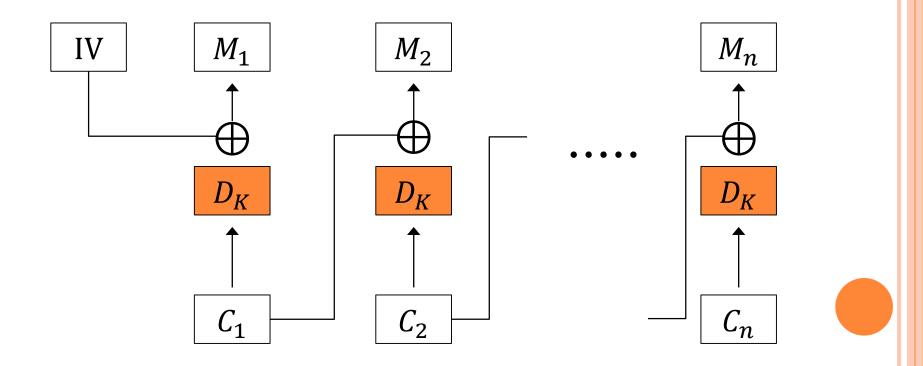
- Link blocks together by using output blocks in the encryption of the following blocks
- > An IV is used as a "seed", but can be sent in clear



CBC PROPERTIES

Error handling:

- Say one ciphertext block is corrupted
- This only affects the decryption of the next block



CBC SECURITY

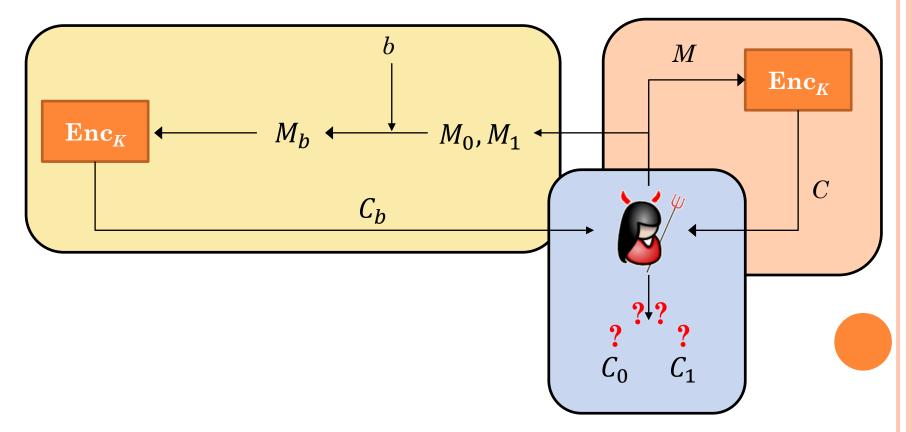
- Not easy to insert messages
- > Plaintext patterns (repetitions, etc.) not detectable

> The IV:

- If IV is chosen uniformly at random and the encryption algorithm is a "good" permutation, then CBC encryption is a "good" encryption scheme
- If IV is constant, CBC encryption does not hide prefixes
- You will often hear "do not use CBC modes in TLS/SSL". This is sound advice, but not because of weaknesses in the design of encryption

WHAT IS "GOOD" SYMMETRIC ENCRYPTION?

- Encryption is meant to hide the plaintext
- For symmetric encryption schemes, a standard notion is IND-CPA security:



WHAT IS "GOOD" SYMMETRIC ENCRYPTION?

- Encryption is meant to hide the plaintext
- For symmetric encryption schemes, a standard notion is IND-CPA security
- In game syntax:

$$K \leftarrow KGen(1^{\lambda})$$
$$(M_0, M_1) \leftarrow \mathcal{A}^{\operatorname{Enc}_K(*)}(1^{\lambda})$$
$$C \leftarrow \operatorname{Enc}_K(M_b)$$
$$d \leftarrow \mathcal{A}^{\operatorname{Enc}_K(*)}(C; 1^{\lambda})$$

 $\boldsymbol{\mathcal{A}}$ wins iff. d = b

> (k, ε) -IND-CPA: adversary has k encryption queries, wins w.p. at most $\frac{1}{2} + \varepsilon$

IND-CPA AND DETERMINISTIC ENCRYPTION

> A generic IND-CPA attack:

- *C* chooses *K* by running Key Generation
- \mathcal{A} picks M_0 , M_1 and sends them to the Enc_K oracle:

 $C_i \coloneqq \operatorname{Enc}_K(M_i)$ for i = 0,1

• \mathcal{A} sends M_0, M_1 to \mathcal{L} who encrypts M_b for $b \stackrel{\$}{\leftarrow} \{0,1\}$:

If b = 0, then $C \coloneqq Enc_K(M_0)$ Else, $C \coloneqq Enc_K(M_1)$

• When \mathcal{A} receives C, it compares it with $C_{0,i}, C_1$, then returns d = i if $C = C_i$; $i \in \{0,1\}$; else \mathcal{A} sets $d \leftarrow \{0,1\}$

> This always works if the encryption is deterministic. Why?

CBC WITH PREDICTALE IV

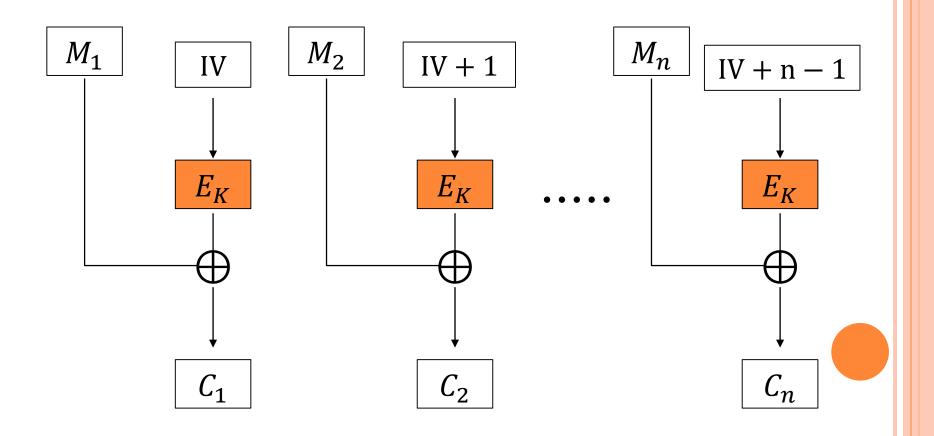
Bug in TLS 1.0: *IV* for message *M'* is last ciphertext block of previous message *M*

> Attack:

- First ask encryption of 0, receiving $(IV, Enc_K(IV))$
- Remember last ciphertext block, call it *IV*'
 - This is the IV for the next ciphertext
- Submit M₀ = IV ⊕ IV' and a random M₁ to challenger
 Now, if b = 0, then Enc_K(IV' ⊕ (IV ⊕ IV')) = Enc_K(IV)

CTR MODE ENCRYPTION

- > Different IVs rather than a single one
- > Parallelizable; IVs link ciphertext blocks together



CTR MODE PROPERTIES

Efficiency and implementation:

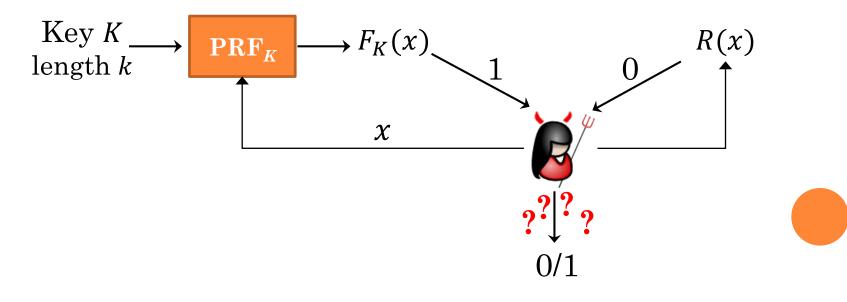
- Fully parallelizable once IV known
- Some pre-processing can be done (such as encryption of all vectors from IV to IV+n-1)

> Security:

- Note that this time, the length of IV need not be exactly equal to n
- Hence, the symmetric encryption scheme is a function, rather than a permutation
- In CTR mode, if encryption scheme is a PRF, then in CTR mode it has IND-CPA security

WHAT IS A PRF?

- ➤ Family of functions $F: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^m$; each function in the family is parametrized on k
- > First parameter is the key, chosen only once, so we regard the function as $F_k: \{0,1\}^n \to \{0,1\}^m$
- Notion of PRF (indistinguishability from random):



WHAT IS A PRF?

- Family of functions F: {0,1}^k × {0,1}ⁿ → {0,1}^m; each function in the family is parametrized on k
- > First parameter is the key, chosen only once, so we regard the function as $F_k: \{0,1\}^n \to \{0,1\}^m$
- Notion of PRF (indistinguishability from random):

$$k \leftarrow \{0,1\}^{k}$$

$$d \leftarrow \mathcal{A}^{G_{b}(*)}$$

$$\mathcal{A} \text{ wins iff. } d = b$$

$$G_{b}(x)$$

$$G_{b}(x)$$

$$If \ b = 0, \text{ return } R(x)$$

$$Else, \text{ return } F_{K}(x)$$

• (k, ε) -PR-ness: k queries to G_b , A wins w.p. at most $\frac{1}{2} + \varepsilon$

PRFS AND PRPS

- \succ For a keyed function $F_K\colon \{0,1\}^n \to \{0,1\}^n,$ we may also speak of permutations
 - Permutation: domain and range are the same
 - Bijection: F_K is keyed permutation if for all K, F_K is 1-to-1 (bijective; thus invertible)

> Pseudo-random permutation:

- Keyed Permutation
- Indistinguishability from a random permutation: akin to PRF game, but with equal domain/range, and the bijective property

IND-CPA SECURITY FROM PRF

> Assumption:

- Use PR function $F: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$
- Choose secret key *K* of length *k* as output of Kgen
- Both encryptor and decryptor know *F* and key *K*
- \succ Encryption of some message $M \in \{0,1\}^n$:
 - Pick random number $r \stackrel{\$}{\leftarrow} \{0,1\}^n$
 - Encrypt *M* to $(r; M \oplus F_K(r))$
- > Decryption of ciphertext $C = (C_1; C_2)$:
 - Decrypt C to $\widehat{M} \coloneqq C_2 \bigoplus F_K(C_1)$

SECURITY OF THIS CONSTRUCTION

> IND-CPA security:

- For any adversary \mathcal{A} against the IND-CPA security of the encryption scheme, making *k* queries to the encryption oracle and winning w.p. $\frac{1}{2} + \varepsilon_A$...
- … There exists an adversary B against the pseudorandomness of the function *F*, which makes *k* queries to its generation oracle, and wins with probability:

$$P_b \ge \frac{1}{2} + \varepsilon_A + \frac{k}{2^n}$$

Proof: in TDs

MESSAGE AUTHENTICATION CODES (MACS)

UNFORGEABILITY AND MACS

Message Authentication Codes prove message integrity and indicate its provenance (sender)

MACs do not hide the message they authenticate
Quite the opposite: often you would send *M* along

> MACs do not entirely hide the key either

• They can reveal a part of the key, as long as it is still hard to recover the other part (say a half)

> Their purpose is to authenticate, not to hide

MACS AND UNFORGEABILITY

- > Algorithms (KGen, MAC, Vf); parties Alice and Bob
 - KGen outputs a symmetric key K, which is given to Alice and Bob

• In practice, we need the key space to be very large

- MAC outputs tag *T* on input message *M* and key *K*
- Vf outputs a bit (0 or 1) on input message M, a key K, and a tag T

Correctness (of MAC and Vf)

• For any K, M, if T = MAC(K; M), it holds Vf(K; M, T) = 1

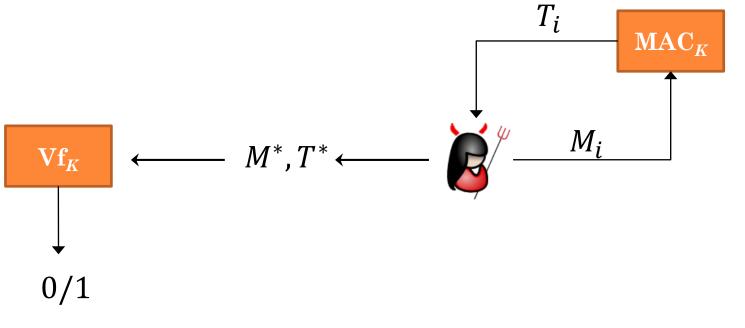
> Security: it should be hard to forge *T* without *K*

WHY MACS?

- > How do we use a MAC?
 - Assume Alice sends message and MAC to Bob
 - Say message is unencrypted, an update or a file
 - An adversary may intercept, change, or replace it
 - Bob receives the message and the MAC
 - Bob verifies the MAC. Ideally:
 - If the MAC verifies: it's Alice's untampered message
 - If the MAC verification fails: the message was tampered with
- > A MAC cannot be forged for a new message
 - But using an old (*M*,*T*)-tuple will lead to verification

THE UNFORGEABILITY GAME

- Not real/random indistinguishability this time
 Unforgoability of freach measures;
- > Unforgeability of fresh messages:



> Adv. wins iff. $M^* \notin \{M_1, \dots, M_n\}$ and $Vf(K; M^*, T^*) = 1$

UNFORGEABILITY IN GAME NOTATION

Existential Unforgeability against Chosen Message Attacks – EUF-CMA:

 $K \stackrel{\$}{\leftarrow} \mathrm{KGen}(1^{\lambda})$ $(M^*, T^*) \leftarrow \mathcal{A}^{MAC_K(*)}$

 \mathcal{A} wins iff. M^* not queried to $MAC_K(M^*)$

 $Vf_{K}(M^{*},T^{*}) = 1$

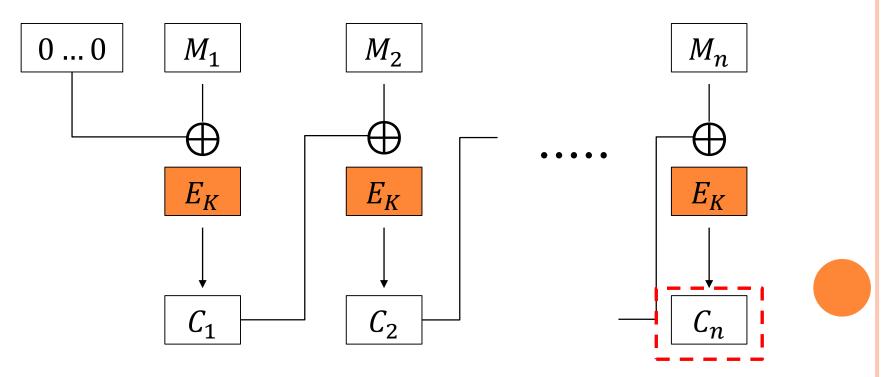
- > Trivial attacks:
 - A could just guess a correct tag, or a correct key
 - The probability is $2^{|MAC_K(*)|} + 2^{|KSpace|}$
 - Goal: make that probability negligible in λ

> (k, ε) -security: \mathcal{A} with k MAC queries wins w.p. ε

CONSTRUCTING MACS

- > Two ways of doing it:
 - Using block ciphers
 - Based on hash functions (which we will see later)

> CBC-MAC:

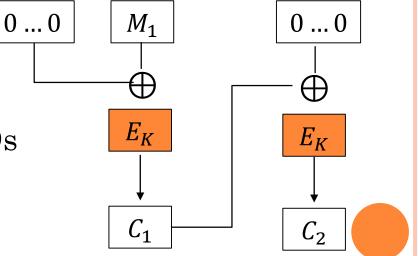


CBC-MAC AND ITS SECURITY

- > If the block cipher E_K is a PRP, then:
 - If we consider only messages of a fixed length, we can prove CBC-MAC is a PRF (no proof here)
 - Any MAC scheme that is a PRF is unforgeable (but not the reverse). Proof in TDs
- However, if we can allow messages of ANY length, we can play on prefixes to get a forgery

A PREFIX-BASED ATTACK

- > Ask for the MAC of some 1-block message M_1 : $C_1 = E_K(0 \oplus M_1)$
- > Then ask for the MAC of this ciphertext: $C_2 = E_K(0 \oplus C_1)$
- > Look at MAC of $M_1 | \mathbf{0}$
 - Collision: C_1 and $M_1 | \mathbf{0}$
- Generalization of attack: TDs



MACS FOR VARIABLE LENGTHS

- Problem is that MAC of messages of any lengths is of length 1 block exactly (last c-text block)
 - We get collisions of messages of variable length
- > Obvious solution: authenticate the length, too.
- > Option 1: if length *n* is known: MAC(*K*; *n*, *M*₁, ..., *M*_n)
 - In theory, perfect; in practice, Vaudenay attacks
- > Option 2: length unknown, 1 key: MAC(K; M_1 , ..., M_n , n)
 - Broken in 1984
- > Option 3: use 2 keys: $E_{K'}(MAC_K(M_1, ..., M_n))$

HASH FUNCTIONS

> Another way to build MACs (will see later)

> What is a hash function?

- Function *f*: {0,1}* → {0,1}ⁿ with variable-length input and fixed-length output
- Inevitably, this means collisions. Why?
- Ideally not many, and hard to find

SECURITY OF HASH FUNCTIONS

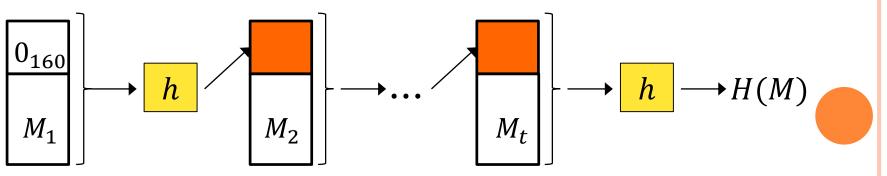
- ▶ Weak collision resistance: for any $x \in \{0,1\}^*$ it is hard to find $x' \neq x$ such that h(x') = h(x)
 - For any x (universal) there exists no adversary A which, given x and access to h, can output such an x' with non-negligible probability
 - Average: for x ← {0,1}*, there exists no adversary *A* which, given x and access to h, can output such an x' with non-negligible probability
- Strong collision resistance: it is hard to find any pair x, x' ≠ x such that h(x) ≠ h(x')
 - In general, easier to find than for fixed *x*

FINDING COLLISIONS

- > The birthday paradox:
 - Probability 1 in 23 people have the same bday as Henri Poincaré (April 29th) : 23/365
 - Probability that 2 people in 23 have the same birthday : $\sum_{i=1}^{365} \binom{365}{2} \left(\frac{1}{365}\right)^2$, which gives about $\frac{1}{2}$
- > What does this mean for us?
 - First case: similar to weak collision resistance
 - Second case: similar to strong collision resistance

MERKLE DAMGAARD

- > Arbitrary-length input from fixed-length input hash function
- > Say $h: \{0,1\}^{512} \rightarrow \{0,1\}^{160}$ (standard input and output sizes)
 - Want to extend it to $H: \{0,1\}^* \rightarrow \{0,1\}^{160}$
 - How do we do this?
- > MD: kind of CBC-mode extension
 - $M = M_1 \dots M_t$ with length of M_i equal to 512-160 = 352



SECURITY OF THIS CONSTRUCTION

> Theorem:

- For any adversary \mathcal{A} that can find, with non negligible probability $p_{\mathcal{A}}$, a collision $M, M' \neq M$ such that $H(M) = H(M') \dots$
- ... There exists an adversary *B* that can find messages m, m' ≠ m with h(m) = h(m') with non-negligible probability p

Proof: in TDs

Conclusion: as long as h is collision-resistant, H is also collision-resistant

COLLISIONS AND COLLISIONS...

- First signs of weakness:
 - Partial collisions, or collisions only in latter stages of the bigger *H* function
- > Further weaknesses:
 - First true collisions appear, but they are heavily contrived: it's a strong collision-resistance attack
 - While valid they fail to convince users that this means in a short time the hash function will be broken
- > Hash function is "broken":
 - We get collisions on chosen messages: given certificate M, we find certificate M' = M s.t. H(M) = H(M')

MACS FROM HASH FUNCTIONS

> To key or not to key: MACs use keys, hashes do not

From no-key to keys:

- First idea: hash key, then message (key for authentication, m for integrity): problem is something similar to CBC prefix problem for Merkle Damgaard
- Second idea: hash message, then key (now message is variable prefix, rather than the constant k): can do birth-day attack on MAC to find collision in hash function h
- Better solution: use something like HMAC

HMAC

▶ Given key *K*, message *m*, hash function *h*

- Also take 2 fixed, known 64-bit strings: pad_{in}, pad_{out}
- Key *K* of 64 bits or padded to that length if necessary
- > HMAC is defined then as:
 - $MAC_K(m) \coloneqq h(K \oplus pad_{out}, h(K \oplus pad_{in}, m))$
- > There exists a proof (which we will not cover here), that says that if HMAC is insecure, then:
 - *h* is not collision resistant; or
 - The output of *h* is "predictable"

UNFORGEABILITY, PRF, PRP

- > HMACs must only offer unforgeability
- > However, the use of the hash function gives more security than just unforgeability
- > Pseudorandomness vs. Unforgeability
 - (Keyed) Pseudorandomness (PRP, PRF), always implies unforgeability
 - However, one can have an unforgeable scheme whose output is not indistinguishable from random

WHAT WE LEARNED TODAY

CIPHERS

Stream ciphers

- Most of them rely on OTP + PRG paradigm
- RC4 is very efficient, but biased and in fact insecure

Block ciphers

- Ideally a PRP of a message of a specific length
- Can be extended to longer messages by using modes
 ECB is bad, CBC is average, CTR seems best
- Ideally they are PRFs

MESSAGE AUTHENTICATION CODES

MACs provide a proof of integrity and authentication of sender, by means of a shared key

Security: MACs should be existentially unforgeable under chosen ciphertext attacks (EUF-CMA)

Constructions:

- Based on block ciphers
- Using hash functions

HASH FUNCTIONS

> Take input of varying length and outputs fixedlength strings

> Hash functions must be collision-resistant

- Weak CR: given x, find x' with H(x) = H(x')
- Strong CR: finx x, x' with H(x) = H(x')
- Can be extended from smaller compression functions to larger hash functions using Merkle Damgaard

> HMAC:

Uses hash function twice, with outer and inner pad functions