INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

INSA -

(&:1RISA

SYMMETRIC CIPHERS AND PRGS

‘ Symmetric Encryption, Perfect Ciphers,
® Definitions of PRGs and PRF's

FROM PREVIOUS LECTURE

Provable security methods:
Define “security”: syntax, model, winning condition
Propose scheme
Define assumptions

Prove security

Game-based definitions:

Algorithms: adversary has necessary information, like in
encryption, signature verification, ...

Oracles: adversary doesn’t have necessary information:
decryption, signatures

Challenge/response: test to see if adversary wins game

PROBABILITY, ADVANTAGE, REDUCTION

Winning probability:

Probabilistic schemes: take probability to win over all the
randomness

Trivial adversary: just guesses the answer

Advantage:
How much better adversary can do over trivial adversary
Distinguishing games: e.g. IND-CCA -- advantage over %
Guessing games: e.g. EUF-CMA — advantage over 1/,x

Reduction:

Assume adversary exists against scheme, construct one
against assumption

GAME-HOPPING

Restricting adversary:
Start with original game
Restrict adversary’s options in future games

Each time, prove equivalence of games:

Method 1: G4, G; are the same except output to A (for
instance PR output changed to random).

Prove that doesn’t matter:

If A can profit, then construct adversary against assumption

Method 2: G4, G; are same except in G, the game aborts if
adversary does something (like forge a certificate)

Prover that this can’t happen

If A can profit, then adversary against assumption

ENCRYPTION SCHEMES

Designed to protect message confidentiality
Usually 2 parties, called Alice and Bob; adversary is Eve
Plaintext M encrypted by Alice, becoming a ciphertext C
Ciphertext C decrypted by Bob to some plaintext M’

Necessary: Bob (and maybe Alice) must have a secret k

L 2

Alice Bob

'(
\H

SECRETS AND NON-SECRETS

Kerckhoff: Consider the algorithm public
If the algorithm is compromised, no problem
More eyes to look at the security of a public algorithm

Symmetric-key encryption (block/stream ciphers)
Alice and Bob share secret key k

£ 8-

M,k

BAsic CIPHERS

» Caesar cipher and extensions
= Permutation cipher
= Key 1s the number of letters we permute by
- Caesar: k =3
- BLOCKCIPHER becomes EORFNFLSKHU

-E-E-E------ﬂﬂmﬂ

D E F G H J K L M N OP QIR S T U

VWX Y Z A B C

THE CAESAR CIPHER

» Kerckhoff: algorithm is public
> We need the key

- Key space 1s too small : brute force works in one go
with probability % and works for sure in 26 attempts

- Attack works only if message 1s meaningful

Brute force is base line for attacks against

ciphers

ONE-TIME PAD

Substitution cipher, C =M + K (e.g. mod 26)

Key length equal to message length

If M = BLOCKCIPHER, and K = PRZANIBQTCS
Say message 1s meaningful and key 1s meaningful

Can we do better than brute force?
Yes, look at language statistics

Say message 1s meaningful, but key 1s truly random
Key hides message information-theoretically

o
Q =
Z, N
o >
< Z
O
> 3
T Q
&~

SECURITY DETAILS

What if same key used multiple times in N attempts?
Case 1: Adversary knows it (described in protocol)
Passive eavesdropper learns M; XOR M,

Equivalent to using meaningful key
Case 2: Adversary does not know (accidental collision)

Even assuming this is problematic,

this happens rarely (w.p. < () 2715

What does it mean that the key “hides” a message?

BLOCKCIPHER + “PRZANIBQTCS” = RCNDYLKFAHJ
UNIVERSALLY + “XOEHUUSEPWO” = RCNDYLKFAHJ

YETIMONSTER + “TYUVLXXNGCS” = RCNDYLKFAHJ
Message 1s meaningful: probability bound by dictionary attack

(GUARANTEE OF ONE-TIME PAD

Ingredients:
Set &, which is an alphabet (like A, B, ..., Z)
Length of messages [
Subset M € &' of meaningful messages of length I

(14 b

An (Abelian) group operation " + " on &', inverse operation

Guarantee:

The cipher consisting of:

o Picking K randomly from &
o Encrypting plaintext M e Mto C =M + K

o Decrypting plaintext CtoM = C — K
guarantees that:
Prob[ptext = M | ctext = C] = Prob [ptext = M |

Perfect cipher

PERFECT CIPHERS

Perfect ciphers:
Prob|[ptext = M | ctext = C] = Prob[ptext = M]

Ciphertext gives no information on plaintext

Theorem 1:

Take a perfect cipher with plaintext alphabet ¢/ (all messages
occuring with non-zero probability) and key space &

Then the size of ¥ is at least equal to the size of g

Proof:

First observation: take plaintexts M; # M,. Then for all k €
it holds that Enc(k; M;) # Enc(k; M,) . Why?

KEY-SIZE OF PERFECT CIPHERS

Theorem 1:
Take a perfect cipher with plaintext alphabet ¢/ (all messages
occuring with non-zero probability) and key space &

Then the size of % 1s at least equal to the size of g

Proof:
Reduction to absurd: Suppose |¥| < |/ — 1
Look at mapping (M, k) - C (through encryption)
Order ¢ in some way (lexicographically or just randomly)
Take the first message, denote 1t M,
Pick key k;, compute C = Enc(ky,M;). If C = 2 (invalid), pick again
Continue picking keys k # k; and run Dec (C, k)

Even if all decryptions give a valid result, Obs 1 tells us there
exists at least one M* that C does not decrypt to.

KEY-SIZE OF PERFECT CIPHERS

Theorem 1:

Take a perfect cipher with plaintext alphabet ¢/ (all messages
occuring with non-zero probability) and key space &

Then the size of % 1s at least equal to the size of g

Proof:
Reduction to absurd: Suppose |¥| < |/ — 1
Look at mapping (M, k) - C (through encryption)

Even if all decryptions give a valid result, Obs 1 tells us there
exists at least one M* that C does not decrypt to

Then for this message it holds that:

Prob[ptext = M* | ctext = C] = 0 +# Prob|ptext = M, | ctext = C]
This 1s impossible (perfect cipher)
Hence |X| = ||

INDISTINGUISHABILITY

Consequence of Theorem 1:
OTP has optimal key size (and it’s long!)

Another way to phrase perfection property:
Indistinguishability:
For any messages M; # M, and any ciphertext C :
Prob[Enc(*, M;) = C] = Prob[Enc(*, M,) = (]

Theorem 2: A cipher 1s perfect if, and only if, it
has the indistinguishability property

Proof: in the TDs.

SOME CONCLUSIONS

Perfect ciphers:
Ciphertext reveals nothing about the plaintext

Equivalently phrased as: each ciphertext could
correspond to any plaintext

... But they require |%| = ||

One Time Pad (OTP):

Is a perfect cipher

Requires: changing key at each encryption
Key length = message length
Unfortunately, this key length is optimal

PART 11
PTT ADVERSARIES AND GAMES

A RELAXATION OF PERFECTION

Security of perfect ciphers does not depend on the
attacker’s computational resources

Attacker with 200 years of computation time still
learns nothing from ciphertext

... however, we need very large keys

We want smaller keys, but sufficient security
Idea: bound the adversary’s resources
Allow some (small) information leakage
Adversary can “win” with very small proability

LESS-THAN-PERFECT CIPHERS

Now assume that we take |¥| < |/
This introduces some attacks

Meaningful message, random key:
Try to decrypt ciphertext with any possible key
This yields a list of “meaningful” possible plaintexts

Compare to perfect security
PS: a ciphertext can hide any meaningful message

Imperfect security: ciphertext can “hide” at most |%]
messages, with || < ||

Key length determines security

COMPUTATIONAL SECURITY BASICS

Generic family of ciphers parametrized by “security
parameter’ n

Usually the length of the secret key

Encryption and Decryption are generic algorithms
(no precise description is given)

Cipher 1s secure if any adversary A can “break” the
encryption scheme with negligible probability

Smaller than */p, 1, for any polynomial Poly[n]

NEGLIGIBLE PROBABILITIES

What is negligible in theory?
Our favourite: 27"
Second best: Poly[n] - 27"
Another possibility: 27198l is non-negligible, but
2~ log*[n] jg negligible

What 1s negligible 1in practice?
Say the adversary wins with probability 27" for a
small value of n

Trying again and again over a large amount of data,
say 1GB, will eventually let &2 succeed

In practice, we like a security of at least 2789

COMPUTATIONAL CIPHER SECURITY

Think of it in terms of a game

The adversary plays this game against our cipher
and the parties using it — encryptor, decryptor

The adversaries can see ciphertexts (possibly
very many of them, but polynomial in the size of

the key)
Security notion: indistinguishability (of
ciphertexts) from random

PSEUDO-RANDOMNESS

Intuition:

If A can’t tell ciphertexts from completely random
strings of the same lengths, then:

A can’t see a plaintext/ciphertext dependence

A can’t see a key/ciphertext dependence

Indistinguishability of real cryptographic systems
from their 1dealizations 1s fundamental to provable
security

PSEUDORANDOM GENERATORS (PRGQG)

Principle: start from a small, random string (called a
seed), get a larger string that looks random

PRG: {0,1}" - {0,1}" for m>n

Security: a “good” PRG outputs strings that are
indistinguishable from random (by an adversary)

Seed s PRG(s)
length n T length m

Deterministic,
public algorithm

THE SECURE-PRG GAME

$
s « {0,1}" Geng,():
$
b i {0,1} If bp=1thenx« U™
d « 2% O(m,n,PRG) Else x « PRG(s)
Return x
A wins iff. b = d

Unbounded vs. bounded &2

Unbounded: as many calls to Gen, as ¢# wants

Bounded: only polynomially many calls, poly-runtime
k-bounded: only k calls, poly-runtime

(k,£)-Secure PRG: G is a k-bounded-secure PRG if, and
only if, any k-bounded adversary g2 wins w.p. at most 1/, + ¢

(asymptotically) k-secure: € € Negl[n]

DISTINGUISHERS/ DISTINGUISHING

What 1s a “random” string?
g

Usually defined as a string for which the probability
that any of the bits is 1 is exactly %

How does the distinguisher distinguish in practice?

Fixed bits
Fixed relationship between bits

Un-fixed, but biased relationship between bits (occur-

ring with prob. p, such that |p — 1/, | non-negligible)

Theorem: In a random string, the probability that

there are less than Iml/ 3 bits equal to 1 1s negligible
Proof in TD

STATISTICAL TESTS

Theorem:

Consider ¢, x to be the poly-sized set of all statistical
tests T, which have poly-runtime, which take as input
a sample of k bitstrings of length m, for a known, fixed
k € Poly[m] and which output 0 (if the string sample 1is
not random) and 1 (if the string sample is random)

Assume that we have a PRG G:{0,1}" - {0,1}" form = 2n

Then: G 1s a secure PRG against a k—bounded adversary
21, and only if, for all T}, , € gk 1t holds that for

$
s « {0,1}"*, T, x run on randomly chosen k-sized samples
of G(s) returns 0 w.p. at most ¢ € Negl[m]

PROOF BY REDUCTION

Theorem:

Assume Ty, € dmr With input a sample of k bitstrings of
length m, outputting 0 (if not random) and 1 (if random)

Assume G:{0,1}" - {0,1}'* form = 2n

$
Then: G 1s k—bounded secure iff. for s < {0,1}", VT, k € dmk
run on the output dist. of G returns 0 w.p. € € Negl[m]

Proof : =

Say G 1s k-bounded secure PRG

Assume 3Ty, € i Which returns 0 w.p. § & Negl[m]
Claim: § & Negl[n] . Why 1is this true?

Construct k-bounded 2 against k-bounded sec. of G s.t. /2
wins with probability p AE Negl[n]

PROOF BY REDUCTION

Theorem:

Assume Ty, € dmr With input a sample of k bitstrings of
length m, outputting 0 (if not random) and 1 (if random)

Assume G:{0,1}" - {0,1}'* form = 2n

$
Then: G 1s k—bounded secure iff. for s < {0,1}", VT, k € dmk
run on the output dist. of G returns 0 w.p. € € Negl[m]

Proof : =

$:
% plays the PRG game. First the game picks: s < {0,1}" bit b
Query Geny, k times (ok, 2 1s k-bounded), get X = {x4, ..., x3}
Run T, on X, get output d € {0,1} (ok, test has poly-runtime)
If &2 does not know which test is good, it can run all of them

Return output d to PRF game

If & tried all tests, return min of all d values

PROOF BY REDUCTION

Proof :

2 plays the PRG game. First the game picks: s i {0,1}" bit b
Query Gen, () k times (ok, o2 is k-bounded), get X = {xq, ..., x;}
Run T;,, , on X, get output d € {0,1} (ok, test has poly-runtime)
Return output d to PRF game

Analysis:
Obs 1: Tjp x always returns 11f bit b = 1 (x4, ..., x; random)
Obs 2:1f b = 0 then X contains outputs of G. Then T,
returns 0 w.p. § € Negl[m] (by assumption)
A wins w.p. Pr[Awins | b = 1] - Pr[b = 1] + Pr[Awins | b = 0] -
Pr[b =0]=1/,+ 1/, §, with § € Negl[n]
So G not a secure PRG. Contradiction

FOOD FOR THOUGHT

Some significant proof steps:
Negl[m] = Negl[n]
Requiring m € Poly[n]

dmx requires a sample of £ elements
Requiring that our 2 is at least k-bounded!

d'mk runs in polynomial time
Else, a bounded adversary cannot run this test

Statement about test holds for randomly chosen seed

If it held only for some seeds, we would not be able to trans-
fer winning probability (PRG game first picks seed at rnd.)

We could have said it held for ALL keys. But then, it would
not be an iff. statement. Let’s see why.

NOW THE OTHER WAY

Theorem:

Assume Ty, € dmr With input a sample of k bitstrings of
length m, outputting 0 (if not random) and 1 (if random)

Assume G:{0,1}" - {0,1}'* form = 2n

$
Then: G 1s k—bounded secure iff. for s < {0,1}", VT, k € dmk
run on the output dist. of G returns 0 w.p. € € Negl[m]

Proof : &

Say V Tk € dmx returns O w.p. at most § € Negl[m]

Say 3 k—bounded A winning w.p. 1/, + ¢ & Negl[n]

Again € € Negl[m]

Construct poly-time test T, , that outputs O w.p. p; € Negl[m]
Claim: £ 1s that T,

ADVANTAGE & UNPREDICTABILITY

In PRG game the adversary’s winning probability
should not be larger than 1/, + ¢
We call Pr[A wins] — 1/, the advantage of &

Unpredictability theorem:
If G:{0,1}"— {0,1}™ with m > n is a bounded-secure

$
PRG, then for a randomly chosen s < {0,1}", no poly-
runtime algorithm gP given the first j bits of G(s) can

predict the (j + 1)-th bit w.p. % + ¢ for ¢ & Negl[n]
Proof in TD

PERFECT TO IMPERFECT CIPHER

Why would we want that?
Well, it’s more efficient, since |%] < ||

Recall the OTP

Traditional OTP for = M = {0,1}™"

$
Choose random k<«

Encrypt message mto:c:= k@ m
Decrypt ciphertext cas: m = c @ k
Unconditionally secure...
.. But:

Key can only be used one time
Key 1s as long as message

PERFECT TO IMPERFECT OTP USING PRG

Recall the OTP
Traditional OTP for = M = {0,1}™"

o Choose random k<« ¥

o Encrypt message mto:c:= k@ m
o Decrypt ciphertext cas: m = c P k

Now replace random key generation by PRG:
OTP for M = {0,1}™ with = {0,1}"* and n <m
Use a bounded-secure PRG G:{0,1}"*— {0,1}"™

$
o KeyGen: choose (once) k <« ¥

o Encrypt message masc = G(k) ®m
o Decrypt message as: m :=c @ G (k)

PERFECT/IMPERFECT CIPHERS

Perfect ciphers:
Prob[ptext = M | ctext = C] = Prob[ptext = M]
Alternatively:
For any messages M; # M, and any ciphertext C :

Prob[Enc(*, M;) = C] = Prob[Enc(*, M,) = C]

Semantic security of imperfect ciphers:

For k < K, b < {0,1}, and for any two messages m,, m4,
no polynomial-time adversary 2 given Encj,(m;) can

output d = b with probability !/, + € for ¢ € Negl[|¥]]

OUR IMPERFECT OTP wiTH PRG WORKS!

Theorem:

The OTP + PRG cipher we considered is semantically
secure as long as the PRG 1s 1-bounded-secure

Formally: for any adversary ¢# against the semantic

security of OTP+PRG, there exists a 1-bounded
adversary B against the PRG-security of G such that:

Pr|g# wins] < Pr[B wins]

If OTP + PRG 1s insecure, then G 1s 1nsecure

IR

As long as G is secure, OTP + PRG 1is secure

LET’S PROVE THIS
Proof:

Game 0: original semantic security game

Game 1: replace G(s) by U™ in encryption
Claim: if there exists a distinguisher) between
games, then we can construct B from D

my @D G(s) my @ G(s) my @ U™ m, U™

N/ N/
iy G(s)— gt i U™ ?

0/1 l 0/1
0/1

LET’S PROVE THIS

Proof:
Consider the distinguisher p. Depending on a bit b’ D
plays either Game 0 or Game 1
We construct B against the 1-bounded PRG of G.

: : $: $
B s game starts with sampling s « {0,1}" and bit b" < {0,1}

$) .
B chooses my, m; < {0,1}", then queries Gen,, () once to obtain x
B draws a random bit d, and sends to D the value m; & x

QD returns a guess bit d'. If d = d', then B returns 0 (Game 0).
Else, Breturns 1

me®G() my B G(s) me @© U™ m, @ U™

N/ N/
y G(s)— gy y—— U™ 8

LET’S PROVE THIS

Proof:
Consider the distinguisher p. Depending on a bit b’ D
plays either Game 0 or Game 1
We construct B against the 1-bounded PRG of G.

: : $: $
B s game starts with sampling s « {0,1}" and bit b" < {0,1}

$) .
B chooses my, m; < {0,1}", then queries Gen,, () once to obtain x
B draws a random bit d, and sends to D the value m; & x
QD returns a guess bit d', which B forwards.

Analysis:

B simulates D’s game perfectly and if D wins w.p. 1/, + 6,
for non-negl. §, then B wins with same probability

LET’S PROVE THIS
Proof:

Game 0: original semantic security game
Game 1: replace G(s) by U™ in encryption
Note that
1

PrlA wins Go| < Pr[A wins G;| + (Pr[D dist. Gy from Gy | =)

1 . 1 .
=+ (Pr[B wins] — E) = Pr[B wins].

mo @ G(s) my @ G(s) my @ U™ m; @ U™

N/ N/
y G(s)— gy j—— U™ @

