
SYMMETRIC CIPHERS AND PRGS

Symmetric Encryption, Perfect Ciphers, 

Definitions of PRGs and PRFs



FROM PREVIOUS LECTURE

 Provable security methods:

 Define “security”: syntax, model, winning condition

 Propose scheme

 Define assumptions

 Prove security 

 Game-based definitions:

 Algorithms: adversary has necessary information, like in 

encryption, signature verification, …

 Oracles: adversary doesn’t have necessary information: 

decryption, signatures

 Challenge/response: test to see if adversary wins game



PROBABILITY, ADVANTAGE, REDUCTION

 Winning probability:

 Probabilistic schemes: take probability to win over all the 
randomness 

 Trivial adversary: just guesses the answer

 Advantage:

 How much better adversary can do over trivial adversary

 Distinguishing games: e.g. IND-CCA -- advantage over ½ 

 Guessing games: e.g. EUF-CMA – advantage over Τ1 2𝑛

 Reduction: 

 Assume adversary exists against scheme, construct one 
against assumption



GAME-HOPPING

 Restricting adversary:

 Start with original game

 Restrict adversary’s options in future games

 Each time, prove equivalence of games:

 Method 1: 𝐺0, 𝐺1 are the same except output to A (for 
instance PR output changed to random). 
 Prove that doesn’t matter:

 If A can profit, then construct adversary against assumption

 Method 2: 𝐺0, 𝐺1 are same except in 𝐺1 the game aborts if 
adversary does something (like forge a certificate)
 Prover that this can’t happen

 If A can profit, then adversary against assumption



ENCRYPTION SCHEMES

 Designed to protect message confidentiality

 Usually 2 parties, called Alice and Bob; adversary is Eve

 Plaintext 𝑀 encrypted by Alice, becoming a ciphertext 𝐶

 Ciphertext C decrypted by Bob to some plaintext 𝑀′

 Necessary: Bob (and maybe Alice) must have a secret 𝑘

Alice Bob



SECRETS AND NON-SECRETS

 Kerckhoff: Consider the algorithm public

 If the algorithm is compromised, no problem

 More eyes to look at the security of a public algorithm 

 Symmetric-key encryption (block/stream ciphers)

 Alice and Bob share secret key 𝑘

Enc

𝑀, 𝑘

Dec
𝐶

𝑘

𝑀



BASIC CIPHERS

 Caesar cipher and extensions

 Permutation cipher

 Key is the number of letters we permute by

 Caesar: 𝑘 = 3

 BLOCKCIPHER becomes EORFNFLSKHU

A B C D E F G H I J

D E F G H I J K L M

K L M N O P Q R

N O P Q R S T U

S T U V W X Y Z

V W X Y Z A B C



THE CAESAR CIPHER

 Kerckhoff: algorithm is public

 We need the key

 Key space is too small : brute force works in one go 

with probability 
1

26
and works for sure in 26 attempts

 Attack works only if message is meaningful

Brute force is base line for attacks against 
ciphers



ONE-TIME PAD

 Substitution cipher, C = M + K (e.g. mod 26)

 Key length equal to message length

 If M = BLOCKCIPHER, and K = PRZANIBQTCS

 Say message is meaningful and key is meaningful

 Can we do better than brute force?

Yes, look at language statistics

 Say message is meaningful, but key is truly random

 Key hides message information-theoretically

B L O C K C I P H E R

P R Z A N I B Q T C S

R C N D Y L K F A H J



SECURITY DETAILS

 What if same key used multiple times in N attempts?

 Case 1: Adversary knows it (described in protocol)

Passive eavesdropper learns 𝑀1 XOR 𝑀2

Equivalent to using meaningful key

 Case 2: Adversary does not know (accidental collision)

Even assuming this is problematic, 

this happens rarely (w.p. ≤ 𝑁
2

2−|𝑠𝑘|) 

 What does it mean that the key “hides” a message?

 BLOCKCIPHER + “PRZANIBQTCS”  = RCNDYLKFAHJ 

UNIVERSALLY + “XOEHUUSEPWO”  = RCNDYLKFAHJ

YETIMONSTER + “TYUVLXXNGCS” = RCNDYLKFAHJ

 Message is meaningful: probability bound by dictionary attack



GUARANTEE OF ONE-TIME PAD

 Ingredients:
 Set S, which is an alphabet (like A, B, ..., Z)

 Length of messages 𝑙

 Subset M ∈ S 𝑙 of meaningful messages of length 𝑙

 An (Abelian) group operation " + " on S 𝑙, inverse operation “−”

 Guarantee:

 The cipher consisting of:

 Picking K randomly from S 𝑙

 Encrypting plaintext 𝑀 ∈ M to 𝐶 ≔ 𝑀 + 𝐾

 Decrypting plaintext 𝐶 to 𝑀 = 𝐶 − 𝐾

guarantees that:

Prob ptext = 𝑀 ctext = 𝐶 ] = Prob ptext = 𝑀

Perfect cipher



PERFECT CIPHERS

 Perfect ciphers:

Prob ptext = 𝑀 ctext = 𝐶] = Prob[ptext = 𝑀]

 Ciphertext gives no information on plaintext

 Theorem 1: 

 Take a perfect cipher with plaintext alphabet M (all messages 

occuring with non-zero probability) and key space K
 Then the size of K is at least equal to the size of M

 Proof: 

 First observation: take plaintexts 𝑀1 ≠ 𝑀2. Then for all 𝑘 ∈ K
it holds that 𝐸𝑛𝑐 𝑘;𝑀1 ≠ 𝐸𝑛𝑐(𝑘; 𝑀2) . Why?



KEY-SIZE OF PERFECT CIPHERS

 Theorem 1: 

 Take a perfect cipher with plaintext alphabet M (all messages 

occuring with non-zero probability) and key space K
 Then the size of K is at least equal to the size of M

 Proof:

 Reduction to absurd: Suppose K ≤ M − 1

 Look at mapping (𝑀, 𝑘) → 𝐶 (through encryption)
 Order M in some way (lexicographically or just randomly)

 Take the first message, denote it 𝑀1

 Pick key 𝑘1, compute 𝐶 = 𝐸𝑛𝑐 𝑘1, 𝑀1 . If C = ℶ (invalid), pick again

 Continue picking keys 𝑘 ≠ 𝑘1 and run 𝐷𝑒𝑐 (𝐶, 𝑘)

 Even if all decryptions give a valid result, Obs 1 tells us there 

exists at least one 𝑀∗ that 𝐶 does not decrypt to. 



KEY-SIZE OF PERFECT CIPHERS

 Theorem 1: 
 Take a perfect cipher with plaintext alphabet M (all messages 

occuring with non-zero probability) and key space K
 Then the size of K is at least equal to the size of M

 Proof:
 Reduction to absurd: Suppose K ≤ M − 1

 Look at mapping (𝑀, 𝑘) → 𝐶 (through encryption)

 Even if all decryptions give a valid result, Obs 1 tells us there 
exists at least one 𝑀∗ that 𝐶 does not decrypt to

 Then for this message it holds that:

Prob ptext = 𝑀∗ ctext = 𝐶] = 0 ≠ Prob ptext = 𝑀1 𝑐𝑡𝑒𝑥𝑡 = 𝐶]

 This is impossible (perfect cipher)

 Hence K ≥ M



INDISTINGUISHABILITY

 Consequence of Theorem 1:

 OTP has optimal key size (and it’s long!)

 Another way to phrase perfection property:

 Indistinguishability:

For any messages 𝑀1 ≠ 𝑀2 and any ciphertext 𝐶 : 

Prob Enc ∗,𝑀1 = 𝐶 = Prob[Enc ∗,𝑀2 = 𝐶]

 Theorem 2: A cipher is perfect if, and only if, it 

has the indistinguishability property

Proof: in the TDs. 



SOME CONCLUSIONS

 Perfect ciphers:

 Ciphertext reveals nothing about the plaintext

 Equivalently phrased as: each ciphertext could 

correspond to any plaintext

 … But they require K ≥ M

 One Time Pad (OTP):

 Is a perfect cipher

 Requires: changing key at each encryption

 Key length  = message length

 Unfortunately, this key length is optimal 



PART II

PTT ADVERSARIES AND GAMES



A RELAXATION OF PERFECTION

 Security of perfect ciphers does not depend on the 

attacker’s computational resources

 Attacker with 200 years of computation time still 

learns nothing from ciphertext

 … however, we need very large keys

 We want smaller keys, but sufficient security

 Idea: bound the adversary’s resources 

 Allow some (small) information leakage

 Adversary can “win” with very small proability



LESS-THAN-PERFECT CIPHERS

 Now assume that we take K < |M|

 This introduces some attacks

 Meaningful message, random key:

 Try to decrypt ciphertext with any possible key

 This yields a list of “meaningful” possible plaintexts

 Compare to perfect security

 PS: a ciphertext can hide any meaningful message

 Imperfect security: ciphertext can “hide” at most |K|
messages, with K < |M|

 Key length determines security



COMPUTATIONAL SECURITY BASICS

 Generic family of ciphers parametrized by “security 

parameter” 𝑛

 Usually the length of the secret key

 Encryption and Decryption are generic algorithms 

(no precise description is given)

 Cipher is secure if any adversary A can “break” the 

encryption scheme with negligible probability

 Smaller than ൗ1 Poly[𝑛] for any polynomial Poly[𝑛]



NEGLIGIBLE PROBABILITIES

 What is negligible in theory?

 Our favourite: 2−𝑛

 Second best: 𝑃𝑜𝑙𝑦 𝑛 ∙ 2−𝑛

 Another possibility: 2− log[𝑛] is non-negligible, but 

2− log2[𝑛] is negligible

 What is negligible in practice?

 Say the adversary wins with probability 2−𝑛 for a 

small value of 𝑛

 Trying again and again over a large amount of data, 
say 1GB, will eventually let A succeed

 In practice, we like a security of at least 2−80



COMPUTATIONAL CIPHER SECURITY

 Think of it in terms of a game

 The adversary plays this game against our cipher 

and the parties using it – encryptor, decryptor

 The adversaries can see ciphertexts (possibly 

very many of them, but polynomial in the size of 

the key)

 Security notion: indistinguishability (of 

ciphertexts) from random



PSEUDO-RANDOMNESS

 Intuition:

 If A can’t tell ciphertexts from completely random 

strings of the same lengths, then:

 A can’t see a plaintext/ciphertext dependence

 A can’t see a key/ciphertext dependence

 Indistinguishability of real cryptographic systems 

from their idealizations is fundamental to provable 

security



PSEUDORANDOM GENERATORS (PRG)

 Principle: start from a small, random string (called a 
seed), get a larger string that looks random

PRG ∶ {0,1}𝑛 → {0,1}𝑚 for 𝑚 > 𝑛

 Security: a “good” PRG outputs strings that are 
indistinguishable from random (by an adversary)

PRG
Seed 𝑠

length 𝑛
PRG(𝑠)

length 𝑚

0/1

Deterministic, 

public algorithm

𝑈𝑚

?
? ?

?



THE SECURE-PRG GAME

 𝑠 ՚
$
{0,1}𝑛

𝑏 ՚
$
{0,1}

𝑑 ՚ A 𝐺𝑒𝑛𝑏 ( )(𝑚, 𝑛, PRG)

𝐺𝑒𝑛𝑏():

If  𝑏 = 1 then 𝑥՚
$
𝑈𝑚

Else 𝑥 ՚ PRG(𝑠)

Return 𝑥
A wins iff. 𝑏 = 𝑑

 (𝒌, 𝜺)-Secure PRG: 𝐺 is a k-bounded-secure PRG if, and 
only if, any k-bounded adversary A wins w.p. at most Τ1 2+ 𝜀

 (asymptotically) k-secure: 𝜀 ∈ Negl[𝑛]

 Unbounded vs. bounded A
 Unbounded: as many calls to 𝐺𝑒𝑛𝑏 as A wants

 Bounded: only polynomially many calls, poly-runtime

 𝑘-bounded: only 𝑘 calls, poly-runtime



DISTINGUISHERS/ DISTINGUISHING

 What is a “random” string?

 Usually defined as a string for which the probability 

that any of the bits is 1 is exactly ½

 How does the distinguisher distinguish in practice?

 Fixed bits

 Fixed relationship between bits

 Un-fixed, but biased relationship between bits (occur-

ring with prob. 𝑝, such that |𝑝 − Τ1 2 | non-negligible)

 Theorem: In a random string, the probability that 

there are less than ൗ|𝑚|
3 bits equal to 1 is negligible

 Proof in TD



STATISTICAL TESTS

 Theorem: 

 Consider T𝑚,𝑘 to be the poly-sized set of all statistical 

tests 𝑇𝑚,𝑘 which have poly-runtime, which take as input 

a sample of 𝑘 bitstrings of length 𝑚, for a known, fixed 

𝑘 ∈ Poly[𝑚] and which output 0 (if the string sample is 

not random) and 1 (if the string sample is random)

 Assume that we have a PRG 𝐺: {0,1}𝑛 → {0,1}𝑚 for 𝑚 = 2𝑛

 Then: 𝐺 is a secure PRG against a 𝑘−bounded adversary 
A if, and only if, for all 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 it holds that for 

𝑠 ՚
$
{0,1}𝑛, 𝑇𝑚,𝑘 run on randomly chosen k-sized samples 

of 𝐺(𝑠) returns 0 w.p. at most 𝜀 ∈ Negl[𝑚]



PROOF BY REDUCTION

 Theorem: 

 Assume 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 with input a sample of 𝑘 bitstrings of 

length 𝑚, outputting 0 (if not random) and 1 (if random)

 Assume 𝐺: {0,1}𝑛 → {0,1}𝑚 for 𝑚 = 2𝑛

 Then: 𝐺 is 𝑘−bounded secure iff. for 𝑠 ՚
$
{0,1}𝑛, ∀ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘

run on the output dist. of 𝐺 returns 0 w.p. 𝜀 ∈ Negl[𝑚]

 Proof : ⇒

 Say 𝐺 is k-bounded secure PRG

 Assume ∃ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 which returns 0 w.p. 𝛿 ∉ Negl 𝑚

 Claim: 𝛿 ∉ Negl[𝑛] . Why is this true?

 Construct k-bounded A against k-bounded sec. of G s.t. A
wins with probability 𝑝A ∉ Negl[𝑛]



PROOF BY REDUCTION

 Proof : ⇒

 A plays the PRG game. First the game picks: 𝑠՚
$
{0,1}𝑛 bit 𝑏

 Query 𝐺𝑒𝑛𝑏 k times (ok, A is k-bounded), get X = 𝑥1, … , 𝑥𝑘

 Run 𝑇𝑚,𝑘 on 𝑋, get output 𝑑 ∈ {0,1} (ok, test has poly-runtime)

 If A does not know which test is good, it can run all of them

 Return output 𝑑 to PRF game 
 If A tried all tests, return min of all d values

 Theorem: 

 Assume 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 with input a sample of 𝑘 bitstrings of 

length 𝑚, outputting 0 (if not random) and 1 (if random)

 Assume 𝐺: {0,1}𝑛 → {0,1}𝑚 for 𝑚 = 2𝑛

 Then: 𝐺 is 𝑘−bounded secure iff. for 𝑠 ՚
$
{0,1}𝑛, ∀ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘

run on the output dist. of 𝐺 returns 0 w.p. 𝜀 ∈ Negl[𝑚]



PROOF BY REDUCTION

 Proof : 

 A plays the PRG game. First the game picks: 𝑠՚
$
{0,1}𝑛 bit 𝑏

 Query 𝐺𝑒𝑛𝑏() k times (ok, A is k-bounded), get X = 𝑥1, … , 𝑥𝑘

 Run 𝑇𝑚,𝑘 on 𝑋, get output 𝑑 ∈ {0,1} (ok, test has poly-runtime)

 Return output 𝑑 to PRF game 

 Analysis:

 Obs 1: 𝑇𝑚,𝑘 always returns 1 if bit 𝑏 = 1 (𝑥1, … , 𝑥𝑘 random) 

 Obs 2: if 𝑏 = 0 then 𝑋 contains outputs of 𝐺. Then 𝑇𝑚,𝑘

returns 0 w.p. 𝛿 ∉ Negl 𝑚 (by assumption)

 A wins w.p. Pr 𝐴 wins | 𝑏 = 1 ∙ Pr [𝑏 = 1] + Pr 𝐴 wins | 𝑏 = 0 ∙
Pr[𝑏 = 0] = Τ1 2+ Τ1 2 𝛿, with 𝛿 ∉ Negl 𝑛

 So 𝐺 not a secure PRG.  Contradiction



FOOD FOR THOUGHT

 Some significant proof steps:

 Negl 𝑚 ≅ Negl 𝑛

 Requiring 𝑚 ∈ Poly[𝑛]

 T𝑚,𝑘 requires a sample of k elements

 Requiring that our A is at least k-bounded!

 T𝑚,𝑘 runs in polynomial time

 Else, a bounded adversary cannot run this test

 Statement about test holds for randomly chosen seed

 If it held only for some seeds, we would not be able to trans-

fer winning probability (PRG game first picks seed at rnd.)

 We could have said it held for ALL keys. But then, it would 

not be an iff. statement. Let’s see why.



NOW THE OTHER WAY

 Theorem: 

 Assume 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 with input a sample of 𝑘 bitstrings of 

length 𝑚, outputting 0 (if not random) and 1 (if random)

 Assume 𝐺: {0,1}𝑛 → {0,1}𝑚 for 𝑚 = 2𝑛

 Then: 𝐺 is 𝑘−bounded secure iff. for 𝑠 ՚
$
{0,1}𝑛, ∀ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘

run on the output dist. of 𝐺 returns 0 w.p. 𝜀 ∈ Negl[𝑚]

 Proof : ⇐

 Say ∀ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 returns 0 w.p. at most 𝛿 ∈ Negl 𝑚

 Say ∃ 𝑘−bounded A winning w.p. Τ1 2+ 𝜀 ∉ Negl[𝑛]

 Again 𝜀 ∉ Negl[𝑚]

 Construct poly-time test 𝑇𝑚,𝑘 that outputs 0 w.p. 𝑝𝑇 ∉ Negl[𝑚]

 Claim: A is that 𝑇𝑚,𝑘



ADVANTAGE & UNPREDICTABILITY

 In PRG game the adversary’s winning probability 

should not be larger than Τ1 2+ 𝜀
 We call Pr 𝐴 wins − Τ1 2 the advantage of A

 Unpredictability theorem:

 If 𝐺: {0,1}𝑛→ {0,1}𝑚 with 𝑚 > 𝑛 is a bounded-secure 

PRG, then for a randomly chosen 𝑠՚
$
{0,1}𝑛, no poly-

runtime algorithm P given the first 𝑗 bits of 𝐺(𝑠) can 

predict the (𝑗 + 1)-th bit w.p. 
1

2
+ 𝜀 for 𝜀 ∉ Negl[𝑛]

 Proof in TD 



PERFECT TO IMPERFECT CIPHER

 Why would we want that?

 Well, it’s more efficient, since K < |M|

 Recall the OTP

 Traditional OTP for K =M = {0,1}𝑚

 Choose random 𝑘՚
$
K

 Encrypt message 𝑚 to : 𝑐 ≔ 𝑘 ⊕𝑚

 Decrypt ciphertext 𝑐 as: ෝ𝑚 ≔ 𝑐 ⊕ 𝑘

 Unconditionally secure...

 ... But:

 Key can only be used one time

 Key is as long as message



PERFECT TO IMPERFECT OTP USING PRG

 Recall the OTP

 Traditional OTP for K =M = {0,1}𝑚

 Choose random 𝑘՚
$
K

 Encrypt message 𝑚 to : 𝑐 ≔ 𝑘 ⊕𝑚

 Decrypt ciphertext 𝑐 as: ෝ𝑚 ≔ 𝑐 ⊕ 𝑘

 Now replace random key generation by PRG:

 OTP for M = {0,1}𝑚 with K = {0,1}𝑛 and 𝑛 < 𝑚

 Use a bounded-secure PRG 𝐺: {0,1}𝑛→ 0,1 𝑚

 KeyGen: choose (once) 𝑘 ՚
$
K

 Encrypt message 𝑚 as 𝑐 ≔ 𝐺 𝑘 ⊕𝑚

 Decrypt message as: ෝ𝑚 ≔ 𝑐 ⊕ 𝐺(𝑘)



PERFECT/IMPERFECT CIPHERS

 Perfect ciphers:

Prob ptext = 𝑀 ctext = 𝐶] = Prob[ptext = 𝑀]

 Alternatively: 

For any messages 𝑀1 ≠ 𝑀2 and any ciphertext 𝐶 : 

Prob Enc ∗,𝑀1 = 𝐶 = Prob[Enc ∗,𝑀2 = 𝐶]

 Semantic security of imperfect ciphers:

 For 𝑘՚
$
𝐾, 𝑏՚

$
{0,1}, and for any two messages 𝑚0, 𝑚1, 

no polynomial-time adversary A given Enc𝑘 𝑚𝑏 can 

output 𝑑 = 𝑏 with probability Τ1 2+ 𝜀 for 𝜀 ∉ Negl[|K|]



OUR IMPERFECT OTP WITH PRG WORKS!

 Theorem:

 The OTP + PRG cipher we considered is semantically 

secure as long as the PRG is 1-bounded-secure

 Formally: for any adversary A against the semantic 

security of OTP+PRG, there exists a 1-bounded 
adversary B against the PRG-security of 𝐺 such that:

Pr A 𝑤𝑖𝑛𝑠 ≤ Pr[B𝑤𝑖𝑛𝑠]

If  OTP + PRG is insecure, then 𝐺 is insecure

As long as 𝐺 is secure, OTP + PRG is secure

≅



LET’S PROVE THIS

 Proof:

 Game 0: original semantic security game

 Game 1: replace 𝐺(𝑠) by 𝑈𝑚 in encryption

 Claim: if there exists a distinguisher D between 

games, then we can construct B from D

𝐺(𝑠)

0/1

𝑈𝑚

𝑚0 ⊕𝐺(𝑠)

0/1

𝑚1 ⊕𝐺(𝑠) 𝑚0 ⊕𝑈𝑚

0/1

𝑚1 ⊕𝑈𝑚



LET’S PROVE THIS

 Proof:
 Consider the distinguisher D. Depending on a bit 𝑏′ D

plays either Game 0 or Game 1

 We construct B against the 1-bounded PRG of 𝐺. 

 B’s game starts with sampling 𝑠՚
$
{0,1}𝑛 and bit 𝑏′′՚

$
{0,1}

 B chooses 𝑚0,𝑚1՚
$
{0,1}𝑛, then queries 𝐺𝑒𝑛𝑏′′() once to obtain 𝑥

 B draws a random bit 𝑑, and sends to D the value 𝑚𝑑 ⊕𝑥

 D returns a guess bit 𝑑′. If 𝑑 = 𝑑′, then B returns 0 (Game 0). 

Else, B returns 1

𝐺(𝑠) 𝑈𝑚

𝑚0 ⊕𝐺(𝑠) 𝑚1 ⊕𝐺(𝑠) 𝑚0 ⊕𝑈𝑚 𝑚1 ⊕𝑈𝑚



LET’S PROVE THIS

 Proof:
 Consider the distinguisher D. Depending on a bit 𝑏′ D

plays either Game 0 or Game 1

 We construct B against the 1-bounded PRG of 𝐺. 

 B’s game starts with sampling 𝑠՚
$
{0,1}𝑛 and bit 𝑏′′՚

$
{0,1}

 B chooses 𝑚0,𝑚1՚
$
{0,1}𝑛, then queries 𝐺𝑒𝑛𝑏′′() once to obtain 𝑥

 B draws a random bit 𝑑, and sends to D the value 𝑚𝑑 ⊕𝑥

 D returns a guess bit 𝑑′, which B forwards.

 Analysis:

 B simulates D’s game perfectly and if D wins w.p. Τ1 2 + 𝛿, 

for non-negl. 𝛿, then B wins with same probability



LET’S PROVE THIS

 Proof:

 Game 0: original semantic security game

 Game 1: replace 𝐺(𝑠) by 𝑈𝑚 in encryption

 Note that 

Pr 𝐴 wins 𝐺0 ≤ Pr 𝐴 wins 𝐺1 + (Pr 𝐷 dist. 𝐺0 from 𝐺1 −
1

2
)

=
1

2
+ Pr 𝐵 wins −

1

2
= Pr[𝐵 wins].

𝐺(𝑠) 𝑈𝑚

𝑚0 ⊕𝐺(𝑠) 𝑚1 ⊕𝐺(𝑠) 𝑚0 ⊕𝑈𝑚 𝑚1 ⊕𝑈𝑚


