
SYMMETRIC CIPHERS AND PRGS

Symmetric Encryption, Perfect Ciphers, 

Definitions of PRGs and PRFs



FROM PREVIOUS LECTURE

 Provable security methods:

 Define “security”: syntax, model, winning condition

 Propose scheme

 Define assumptions

 Prove security 

 Game-based definitions:

 Algorithms: adversary has necessary information, like in 

encryption, signature verification, …

 Oracles: adversary doesn’t have necessary information: 

decryption, signatures

 Challenge/response: test to see if adversary wins game



PROBABILITY, ADVANTAGE, REDUCTION

 Winning probability:

 Probabilistic schemes: take probability to win over all the 
randomness 

 Trivial adversary: just guesses the answer

 Advantage:

 How much better adversary can do over trivial adversary

 Distinguishing games: e.g. IND-CCA -- advantage over ½ 

 Guessing games: e.g. EUF-CMA – advantage over Τ1 2𝑛

 Reduction: 

 Assume adversary exists against scheme, construct one 
against assumption



GAME-HOPPING

 Restricting adversary:

 Start with original game

 Restrict adversary’s options in future games

 Each time, prove equivalence of games:

 Method 1: 𝐺0, 𝐺1 are the same except output to A (for 
instance PR output changed to random). 
 Prove that doesn’t matter:

 If A can profit, then construct adversary against assumption

 Method 2: 𝐺0, 𝐺1 are same except in 𝐺1 the game aborts if 
adversary does something (like forge a certificate)
 Prover that this can’t happen

 If A can profit, then adversary against assumption



ENCRYPTION SCHEMES

 Designed to protect message confidentiality

 Usually 2 parties, called Alice and Bob; adversary is Eve

 Plaintext 𝑀 encrypted by Alice, becoming a ciphertext 𝐶

 Ciphertext C decrypted by Bob to some plaintext 𝑀′

 Necessary: Bob (and maybe Alice) must have a secret 𝑘

Alice Bob



SECRETS AND NON-SECRETS

 Kerckhoff: Consider the algorithm public

 If the algorithm is compromised, no problem

 More eyes to look at the security of a public algorithm 

 Symmetric-key encryption (block/stream ciphers)

 Alice and Bob share secret key 𝑘

Enc

𝑀, 𝑘

Dec
𝐶

𝑘

𝑀



BASIC CIPHERS

 Caesar cipher and extensions

 Permutation cipher

 Key is the number of letters we permute by

 Caesar: 𝑘 = 3

 BLOCKCIPHER becomes EORFNFLSKHU

A B C D E F G H I J

D E F G H I J K L M

K L M N O P Q R

N O P Q R S T U

S T U V W X Y Z

V W X Y Z A B C



THE CAESAR CIPHER

 Kerckhoff: algorithm is public

 We need the key

 Key space is too small : brute force works in one go 

with probability 
1

26
and works for sure in 26 attempts

 Attack works only if message is meaningful

Brute force is base line for attacks against 
ciphers



ONE-TIME PAD

 Substitution cipher, C = M + K (e.g. mod 26)

 Key length equal to message length

 If M = BLOCKCIPHER, and K = PRZANIBQTCS

 Say message is meaningful and key is meaningful

 Can we do better than brute force?

Yes, look at language statistics

 Say message is meaningful, but key is truly random

 Key hides message information-theoretically

B L O C K C I P H E R

P R Z A N I B Q T C S

R C N D Y L K F A H J



SECURITY DETAILS

 What if same key used multiple times in N attempts?

 Case 1: Adversary knows it (described in protocol)

Passive eavesdropper learns 𝑀1 XOR 𝑀2

Equivalent to using meaningful key

 Case 2: Adversary does not know (accidental collision)

Even assuming this is problematic, 

this happens rarely (w.p. ≤ 𝑁
2

2−|𝑠𝑘|) 

 What does it mean that the key “hides” a message?

 BLOCKCIPHER + “PRZANIBQTCS”  = RCNDYLKFAHJ 

UNIVERSALLY + “XOEHUUSEPWO”  = RCNDYLKFAHJ

YETIMONSTER + “TYUVLXXNGCS” = RCNDYLKFAHJ

 Message is meaningful: probability bound by dictionary attack



GUARANTEE OF ONE-TIME PAD

 Ingredients:
 Set S, which is an alphabet (like A, B, ..., Z)

 Length of messages 𝑙

 Subset M ∈ S 𝑙 of meaningful messages of length 𝑙

 An (Abelian) group operation " + " on S 𝑙, inverse operation “−”

 Guarantee:

 The cipher consisting of:

 Picking K randomly from S 𝑙

 Encrypting plaintext 𝑀 ∈ M to 𝐶 ≔ 𝑀 + 𝐾

 Decrypting plaintext 𝐶 to 𝑀 = 𝐶 − 𝐾

guarantees that:

Prob ptext = 𝑀 ctext = 𝐶 ] = Prob ptext = 𝑀

Perfect cipher



PERFECT CIPHERS

 Perfect ciphers:

Prob ptext = 𝑀 ctext = 𝐶] = Prob[ptext = 𝑀]

 Ciphertext gives no information on plaintext

 Theorem 1: 

 Take a perfect cipher with plaintext alphabet M (all messages 

occuring with non-zero probability) and key space K
 Then the size of K is at least equal to the size of M

 Proof: 

 First observation: take plaintexts 𝑀1 ≠ 𝑀2. Then for all 𝑘 ∈ K
it holds that 𝐸𝑛𝑐 𝑘;𝑀1 ≠ 𝐸𝑛𝑐(𝑘; 𝑀2) . Why?



KEY-SIZE OF PERFECT CIPHERS

 Theorem 1: 

 Take a perfect cipher with plaintext alphabet M (all messages 

occuring with non-zero probability) and key space K
 Then the size of K is at least equal to the size of M

 Proof:

 Reduction to absurd: Suppose K ≤ M − 1

 Look at mapping (𝑀, 𝑘) → 𝐶 (through encryption)
 Order M in some way (lexicographically or just randomly)

 Take the first message, denote it 𝑀1

 Pick key 𝑘1, compute 𝐶 = 𝐸𝑛𝑐 𝑘1, 𝑀1 . If C = ℶ (invalid), pick again

 Continue picking keys 𝑘 ≠ 𝑘1 and run 𝐷𝑒𝑐 (𝐶, 𝑘)

 Even if all decryptions give a valid result, Obs 1 tells us there 

exists at least one 𝑀∗ that 𝐶 does not decrypt to. 



KEY-SIZE OF PERFECT CIPHERS

 Theorem 1: 
 Take a perfect cipher with plaintext alphabet M (all messages 

occuring with non-zero probability) and key space K
 Then the size of K is at least equal to the size of M

 Proof:
 Reduction to absurd: Suppose K ≤ M − 1

 Look at mapping (𝑀, 𝑘) → 𝐶 (through encryption)

 Even if all decryptions give a valid result, Obs 1 tells us there 
exists at least one 𝑀∗ that 𝐶 does not decrypt to

 Then for this message it holds that:

Prob ptext = 𝑀∗ ctext = 𝐶] = 0 ≠ Prob ptext = 𝑀1 𝑐𝑡𝑒𝑥𝑡 = 𝐶]

 This is impossible (perfect cipher)

 Hence K ≥ M



INDISTINGUISHABILITY

 Consequence of Theorem 1:

 OTP has optimal key size (and it’s long!)

 Another way to phrase perfection property:

 Indistinguishability:

For any messages 𝑀1 ≠ 𝑀2 and any ciphertext 𝐶 : 

Prob Enc ∗,𝑀1 = 𝐶 = Prob[Enc ∗,𝑀2 = 𝐶]

 Theorem 2: A cipher is perfect if, and only if, it 

has the indistinguishability property

Proof: in the TDs. 



SOME CONCLUSIONS

 Perfect ciphers:

 Ciphertext reveals nothing about the plaintext

 Equivalently phrased as: each ciphertext could 

correspond to any plaintext

 … But they require K ≥ M

 One Time Pad (OTP):

 Is a perfect cipher

 Requires: changing key at each encryption

 Key length  = message length

 Unfortunately, this key length is optimal 



PART II

PTT ADVERSARIES AND GAMES



A RELAXATION OF PERFECTION

 Security of perfect ciphers does not depend on the 

attacker’s computational resources

 Attacker with 200 years of computation time still 

learns nothing from ciphertext

 … however, we need very large keys

 We want smaller keys, but sufficient security

 Idea: bound the adversary’s resources 

 Allow some (small) information leakage

 Adversary can “win” with very small proability



LESS-THAN-PERFECT CIPHERS

 Now assume that we take K < |M|

 This introduces some attacks

 Meaningful message, random key:

 Try to decrypt ciphertext with any possible key

 This yields a list of “meaningful” possible plaintexts

 Compare to perfect security

 PS: a ciphertext can hide any meaningful message

 Imperfect security: ciphertext can “hide” at most |K|
messages, with K < |M|

 Key length determines security



COMPUTATIONAL SECURITY BASICS

 Generic family of ciphers parametrized by “security 

parameter” 𝑛

 Usually the length of the secret key

 Encryption and Decryption are generic algorithms 

(no precise description is given)

 Cipher is secure if any adversary A can “break” the 

encryption scheme with negligible probability

 Smaller than ൗ1 Poly[𝑛] for any polynomial Poly[𝑛]



NEGLIGIBLE PROBABILITIES

 What is negligible in theory?

 Our favourite: 2−𝑛

 Second best: 𝑃𝑜𝑙𝑦 𝑛 ∙ 2−𝑛

 Another possibility: 2− log[𝑛] is non-negligible, but 

2− log2[𝑛] is negligible

 What is negligible in practice?

 Say the adversary wins with probability 2−𝑛 for a 

small value of 𝑛

 Trying again and again over a large amount of data, 
say 1GB, will eventually let A succeed

 In practice, we like a security of at least 2−80



COMPUTATIONAL CIPHER SECURITY

 Think of it in terms of a game

 The adversary plays this game against our cipher 

and the parties using it – encryptor, decryptor

 The adversaries can see ciphertexts (possibly 

very many of them, but polynomial in the size of 

the key)

 Security notion: indistinguishability (of 

ciphertexts) from random



PSEUDO-RANDOMNESS

 Intuition:

 If A can’t tell ciphertexts from completely random 

strings of the same lengths, then:

 A can’t see a plaintext/ciphertext dependence

 A can’t see a key/ciphertext dependence

 Indistinguishability of real cryptographic systems 

from their idealizations is fundamental to provable 

security



PSEUDORANDOM GENERATORS (PRG)

 Principle: start from a small, random string (called a 
seed), get a larger string that looks random

PRG ∶ {0,1}𝑛 → {0,1}𝑚 for 𝑚 > 𝑛

 Security: a “good” PRG outputs strings that are 
indistinguishable from random (by an adversary)

PRG
Seed 𝑠

length 𝑛
PRG(𝑠)

length 𝑚

0/1

Deterministic, 

public algorithm

𝑈𝑚

?
? ?

?



THE SECURE-PRG GAME

 𝑠 ՚
$
{0,1}𝑛

𝑏 ՚
$
{0,1}

𝑑 ՚ A 𝐺𝑒𝑛𝑏 ( )(𝑚, 𝑛, PRG)

𝐺𝑒𝑛𝑏():

If  𝑏 = 1 then 𝑥՚
$
𝑈𝑚

Else 𝑥 ՚ PRG(𝑠)

Return 𝑥
A wins iff. 𝑏 = 𝑑

 (𝒌, 𝜺)-Secure PRG: 𝐺 is a k-bounded-secure PRG if, and 
only if, any k-bounded adversary A wins w.p. at most Τ1 2+ 𝜀

 (asymptotically) k-secure: 𝜀 ∈ Negl[𝑛]

 Unbounded vs. bounded A
 Unbounded: as many calls to 𝐺𝑒𝑛𝑏 as A wants

 Bounded: only polynomially many calls, poly-runtime

 𝑘-bounded: only 𝑘 calls, poly-runtime



DISTINGUISHERS/ DISTINGUISHING

 What is a “random” string?

 Usually defined as a string for which the probability 

that any of the bits is 1 is exactly ½

 How does the distinguisher distinguish in practice?

 Fixed bits

 Fixed relationship between bits

 Un-fixed, but biased relationship between bits (occur-

ring with prob. 𝑝, such that |𝑝 − Τ1 2 | non-negligible)

 Theorem: In a random string, the probability that 

there are less than ൗ|𝑚|
3 bits equal to 1 is negligible

 Proof in TD



STATISTICAL TESTS

 Theorem: 

 Consider T𝑚,𝑘 to be the poly-sized set of all statistical 

tests 𝑇𝑚,𝑘 which have poly-runtime, which take as input 

a sample of 𝑘 bitstrings of length 𝑚, for a known, fixed 

𝑘 ∈ Poly[𝑚] and which output 0 (if the string sample is 

not random) and 1 (if the string sample is random)

 Assume that we have a PRG 𝐺: {0,1}𝑛 → {0,1}𝑚 for 𝑚 = 2𝑛

 Then: 𝐺 is a secure PRG against a 𝑘−bounded adversary 
A if, and only if, for all 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 it holds that for 

𝑠 ՚
$
{0,1}𝑛, 𝑇𝑚,𝑘 run on randomly chosen k-sized samples 

of 𝐺(𝑠) returns 0 w.p. at most 𝜀 ∈ Negl[𝑚]



PROOF BY REDUCTION

 Theorem: 

 Assume 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 with input a sample of 𝑘 bitstrings of 

length 𝑚, outputting 0 (if not random) and 1 (if random)

 Assume 𝐺: {0,1}𝑛 → {0,1}𝑚 for 𝑚 = 2𝑛

 Then: 𝐺 is 𝑘−bounded secure iff. for 𝑠 ՚
$
{0,1}𝑛, ∀ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘

run on the output dist. of 𝐺 returns 0 w.p. 𝜀 ∈ Negl[𝑚]

 Proof : ⇒

 Say 𝐺 is k-bounded secure PRG

 Assume ∃ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 which returns 0 w.p. 𝛿 ∉ Negl 𝑚

 Claim: 𝛿 ∉ Negl[𝑛] . Why is this true?

 Construct k-bounded A against k-bounded sec. of G s.t. A
wins with probability 𝑝A ∉ Negl[𝑛]



PROOF BY REDUCTION

 Proof : ⇒

 A plays the PRG game. First the game picks: 𝑠՚
$
{0,1}𝑛 bit 𝑏

 Query 𝐺𝑒𝑛𝑏 k times (ok, A is k-bounded), get X = 𝑥1, … , 𝑥𝑘

 Run 𝑇𝑚,𝑘 on 𝑋, get output 𝑑 ∈ {0,1} (ok, test has poly-runtime)

 If A does not know which test is good, it can run all of them

 Return output 𝑑 to PRF game 
 If A tried all tests, return min of all d values

 Theorem: 

 Assume 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 with input a sample of 𝑘 bitstrings of 

length 𝑚, outputting 0 (if not random) and 1 (if random)

 Assume 𝐺: {0,1}𝑛 → {0,1}𝑚 for 𝑚 = 2𝑛

 Then: 𝐺 is 𝑘−bounded secure iff. for 𝑠 ՚
$
{0,1}𝑛, ∀ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘

run on the output dist. of 𝐺 returns 0 w.p. 𝜀 ∈ Negl[𝑚]



PROOF BY REDUCTION

 Proof : 

 A plays the PRG game. First the game picks: 𝑠՚
$
{0,1}𝑛 bit 𝑏

 Query 𝐺𝑒𝑛𝑏() k times (ok, A is k-bounded), get X = 𝑥1, … , 𝑥𝑘

 Run 𝑇𝑚,𝑘 on 𝑋, get output 𝑑 ∈ {0,1} (ok, test has poly-runtime)

 Return output 𝑑 to PRF game 

 Analysis:

 Obs 1: 𝑇𝑚,𝑘 always returns 1 if bit 𝑏 = 1 (𝑥1, … , 𝑥𝑘 random) 

 Obs 2: if 𝑏 = 0 then 𝑋 contains outputs of 𝐺. Then 𝑇𝑚,𝑘

returns 0 w.p. 𝛿 ∉ Negl 𝑚 (by assumption)

 A wins w.p. Pr 𝐴 wins | 𝑏 = 1 ∙ Pr [𝑏 = 1] + Pr 𝐴 wins | 𝑏 = 0 ∙
Pr[𝑏 = 0] = Τ1 2+ Τ1 2 𝛿, with 𝛿 ∉ Negl 𝑛

 So 𝐺 not a secure PRG.  Contradiction



FOOD FOR THOUGHT

 Some significant proof steps:

 Negl 𝑚 ≅ Negl 𝑛

 Requiring 𝑚 ∈ Poly[𝑛]

 T𝑚,𝑘 requires a sample of k elements

 Requiring that our A is at least k-bounded!

 T𝑚,𝑘 runs in polynomial time

 Else, a bounded adversary cannot run this test

 Statement about test holds for randomly chosen seed

 If it held only for some seeds, we would not be able to trans-

fer winning probability (PRG game first picks seed at rnd.)

 We could have said it held for ALL keys. But then, it would 

not be an iff. statement. Let’s see why.



NOW THE OTHER WAY

 Theorem: 

 Assume 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 with input a sample of 𝑘 bitstrings of 

length 𝑚, outputting 0 (if not random) and 1 (if random)

 Assume 𝐺: {0,1}𝑛 → {0,1}𝑚 for 𝑚 = 2𝑛

 Then: 𝐺 is 𝑘−bounded secure iff. for 𝑠 ՚
$
{0,1}𝑛, ∀ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘

run on the output dist. of 𝐺 returns 0 w.p. 𝜀 ∈ Negl[𝑚]

 Proof : ⇐

 Say ∀ 𝑇𝑚,𝑘 ∈ T𝑚,𝑘 returns 0 w.p. at most 𝛿 ∈ Negl 𝑚

 Say ∃ 𝑘−bounded A winning w.p. Τ1 2+ 𝜀 ∉ Negl[𝑛]

 Again 𝜀 ∉ Negl[𝑚]

 Construct poly-time test 𝑇𝑚,𝑘 that outputs 0 w.p. 𝑝𝑇 ∉ Negl[𝑚]

 Claim: A is that 𝑇𝑚,𝑘



ADVANTAGE & UNPREDICTABILITY

 In PRG game the adversary’s winning probability 

should not be larger than Τ1 2+ 𝜀
 We call Pr 𝐴 wins − Τ1 2 the advantage of A

 Unpredictability theorem:

 If 𝐺: {0,1}𝑛→ {0,1}𝑚 with 𝑚 > 𝑛 is a bounded-secure 

PRG, then for a randomly chosen 𝑠՚
$
{0,1}𝑛, no poly-

runtime algorithm P given the first 𝑗 bits of 𝐺(𝑠) can 

predict the (𝑗 + 1)-th bit w.p. 
1

2
+ 𝜀 for 𝜀 ∉ Negl[𝑛]

 Proof in TD 



PERFECT TO IMPERFECT CIPHER

 Why would we want that?

 Well, it’s more efficient, since K < |M|

 Recall the OTP

 Traditional OTP for K =M = {0,1}𝑚

 Choose random 𝑘՚
$
K

 Encrypt message 𝑚 to : 𝑐 ≔ 𝑘 ⊕𝑚

 Decrypt ciphertext 𝑐 as: ෝ𝑚 ≔ 𝑐 ⊕ 𝑘

 Unconditionally secure...

 ... But:

 Key can only be used one time

 Key is as long as message



PERFECT TO IMPERFECT OTP USING PRG

 Recall the OTP

 Traditional OTP for K =M = {0,1}𝑚

 Choose random 𝑘՚
$
K

 Encrypt message 𝑚 to : 𝑐 ≔ 𝑘 ⊕𝑚

 Decrypt ciphertext 𝑐 as: ෝ𝑚 ≔ 𝑐 ⊕ 𝑘

 Now replace random key generation by PRG:

 OTP for M = {0,1}𝑚 with K = {0,1}𝑛 and 𝑛 < 𝑚

 Use a bounded-secure PRG 𝐺: {0,1}𝑛→ 0,1 𝑚

 KeyGen: choose (once) 𝑘 ՚
$
K

 Encrypt message 𝑚 as 𝑐 ≔ 𝐺 𝑘 ⊕𝑚

 Decrypt message as: ෝ𝑚 ≔ 𝑐 ⊕ 𝐺(𝑘)



PERFECT/IMPERFECT CIPHERS

 Perfect ciphers:

Prob ptext = 𝑀 ctext = 𝐶] = Prob[ptext = 𝑀]

 Alternatively: 

For any messages 𝑀1 ≠ 𝑀2 and any ciphertext 𝐶 : 

Prob Enc ∗,𝑀1 = 𝐶 = Prob[Enc ∗,𝑀2 = 𝐶]

 Semantic security of imperfect ciphers:

 For 𝑘՚
$
𝐾, 𝑏՚

$
{0,1}, and for any two messages 𝑚0, 𝑚1, 

no polynomial-time adversary A given Enc𝑘 𝑚𝑏 can 

output 𝑑 = 𝑏 with probability Τ1 2+ 𝜀 for 𝜀 ∉ Negl[|K|]



OUR IMPERFECT OTP WITH PRG WORKS!

 Theorem:

 The OTP + PRG cipher we considered is semantically 

secure as long as the PRG is 1-bounded-secure

 Formally: for any adversary A against the semantic 

security of OTP+PRG, there exists a 1-bounded 
adversary B against the PRG-security of 𝐺 such that:

Pr A 𝑤𝑖𝑛𝑠 ≤ Pr[B𝑤𝑖𝑛𝑠]

If  OTP + PRG is insecure, then 𝐺 is insecure

As long as 𝐺 is secure, OTP + PRG is secure

≅



LET’S PROVE THIS

 Proof:

 Game 0: original semantic security game

 Game 1: replace 𝐺(𝑠) by 𝑈𝑚 in encryption

 Claim: if there exists a distinguisher D between 

games, then we can construct B from D

𝐺(𝑠)

0/1

𝑈𝑚

𝑚0 ⊕𝐺(𝑠)

0/1

𝑚1 ⊕𝐺(𝑠) 𝑚0 ⊕𝑈𝑚

0/1

𝑚1 ⊕𝑈𝑚



LET’S PROVE THIS

 Proof:
 Consider the distinguisher D. Depending on a bit 𝑏′ D

plays either Game 0 or Game 1

 We construct B against the 1-bounded PRG of 𝐺. 

 B’s game starts with sampling 𝑠՚
$
{0,1}𝑛 and bit 𝑏′′՚

$
{0,1}

 B chooses 𝑚0,𝑚1՚
$
{0,1}𝑛, then queries 𝐺𝑒𝑛𝑏′′() once to obtain 𝑥

 B draws a random bit 𝑑, and sends to D the value 𝑚𝑑 ⊕𝑥

 D returns a guess bit 𝑑′. If 𝑑 = 𝑑′, then B returns 0 (Game 0). 

Else, B returns 1

𝐺(𝑠) 𝑈𝑚

𝑚0 ⊕𝐺(𝑠) 𝑚1 ⊕𝐺(𝑠) 𝑚0 ⊕𝑈𝑚 𝑚1 ⊕𝑈𝑚



LET’S PROVE THIS

 Proof:
 Consider the distinguisher D. Depending on a bit 𝑏′ D

plays either Game 0 or Game 1

 We construct B against the 1-bounded PRG of 𝐺. 

 B’s game starts with sampling 𝑠՚
$
{0,1}𝑛 and bit 𝑏′′՚

$
{0,1}

 B chooses 𝑚0,𝑚1՚
$
{0,1}𝑛, then queries 𝐺𝑒𝑛𝑏′′() once to obtain 𝑥

 B draws a random bit 𝑑, and sends to D the value 𝑚𝑑 ⊕𝑥

 D returns a guess bit 𝑑′, which B forwards.

 Analysis:

 B simulates D’s game perfectly and if D wins w.p. Τ1 2 + 𝛿, 

for non-negl. 𝛿, then B wins with same probability



LET’S PROVE THIS

 Proof:

 Game 0: original semantic security game

 Game 1: replace 𝐺(𝑠) by 𝑈𝑚 in encryption

 Note that 

Pr 𝐴 wins 𝐺0 ≤ Pr 𝐴 wins 𝐺1 + (Pr 𝐷 dist. 𝐺0 from 𝐺1 −
1

2
)

=
1

2
+ Pr 𝐵 wins −

1

2
= Pr[𝐵 wins].

𝐺(𝑠) 𝑈𝑚

𝑚0 ⊕𝐺(𝑠) 𝑚1 ⊕𝐺(𝑠) 𝑚0 ⊕𝑈𝑚 𝑚1 ⊕𝑈𝑚


