INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

INSA -

(&:1RISA

INTRODUCTION TO PROVABLE
® SECcURITY

Models, Adversaries, Reductions

CRYPTOGRAPHY / CRYPTOLOGY

“from Greek kputrtoc kryptés, "hidden, secret”;
and ypaosiv graphein, "writing", or -Aovia -logia, "study",
respectively”

“is the practice and study of techniques for secure
communication in the presence of third parties
(called adversaries).”

Source : www.wikipedia.org

"

https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wiktionary.org/wiki/en:%CE%BA%CF%81%CF%85%CF%80%CF%84%CF%8C%CF%82
https://en.wiktionary.org/wiki/en:%CE%B3%CF%81%CE%AC%CF%86%CF%89#Ancient_Greek
https://en.wiktionary.org/wiki/en:-%CE%BB%CE%BF%CE%B3%CE%AF%CE%B1#Greek
https://en.wikipedia.org/wiki/-logy
https://en.wikipedia.org/wiki/Secure_communication
https://en.wikipedia.org/wiki/Adversary_(cryptography)

SOME CRYPTOGRAPHIC GOALS

Confidentiality
Content of conversation remains hidden
Authenticity
Message is really sent by specific sender
Integrity
Message has not been modified
Privacy:
Sensitive (user) data remains hidden
Covertcy
The fact that a conversation is taking place is hidden

CONFIDENTIALITY

» Parties exchange messages
» Parties store documents (or strings e.g. passwords)

No unauthorized party can learn anything

about contents.

AUTHENTICITY

» “Online”: Alice proves legitimacy to Bob in real-time

fashion (interactively)

No unauthorized party can impersonate a user

» “Offline”: Alice generates proof of identity to be
verified offline by Bob

No unauthorized party can forge the proof

INTEGRITY

» Parties send or receive messages

No modification to content of message(s)

HOW CRYPTOGRAPHY WORKS

Use building blocks (primitives)
... either by themselves (hashing for integrity)
... or 1n larger constructions (protocols, schemes)

Security must be guaranteed even 1f mechanism
(primitive, protocol) 1s known to adversaries

Steganography vs. cryptography:
Steganography: hide secret information in plain sight

Cryptography: change secret information to
something else, then send it

A BRIEF HISTORY

“Stone age”: secrecy of algorithm
Substitution and permutation (solvable by hand)

Caesar cipher, Vigenere cipher, etc.

“Industrial Age”: automation of cryptology
Cryptographic machines like Enigma
Fast, automated permutations (need machines to solve)

“Contemporary Age”: provable security

Starting from assumptions (e.g. a one-way function),
I build a scheme, which 1s “provably” secure in model

PART 11
THE PROVABLE SECURITY METHOD

SECURITY BY TRIAL-AND-ERROR

Identify goal (e.g. confidentiality in P2P networks)
Design solution — the strategy:

Propose protocol
Search for an attack

If attack found, fix (go to first step)
After many iterations or some time, halt

Output: resulting scheme

Problems:

What is “many” iterations/ “some” time?
Some schemes take time to break: MD5, RC4...

PROVABLE SECURITY

Identify goal. Define security:
Syntax of the primitive: e.g. algorithms (KGen, Sign, V{)
Adversary (e.g. can get signatures for arbitrary msgs.)
Security conditions (e.g. adv. can’t sign fresh message)

Propose a scheme (instantiate syntax)

Define/choose security assumptions
Properties of primitives / number theoretical problems

Prove security — 2 step algorithm:
Assume we can break security of scheme (adv. &4)

Then build “Reduction” (adv. B) breaking assumption

THE ESSENCE OF PROVABLE SECURITY

» Core question: what does “secure” mean?

= “Secure encryption” vs. “Secure signature scheme”

» Say a scheme is secure against all known attacks

= ... will it be secure against a new, yet unknown
attack?

» Step 1: Define your primitive (syntax)

Signature Scheme: algorithms (KGen, Sign, Vi)

* KGen(1Y) outputs (sk, pk)
* Sign(sk,m) outputs S (prob.)
* Vi(pk,m,S) outputs 0 or 1 (det.)

THE ESSENCE OF PROVABLE SECURITY

» Core question: what does “secure” mean?

= “Secure encryption” vs. “Secure signature scheme”

» Say a scheme is secure against all known attacks

= ... will it be secure against a new, yet unknown
attack?

» Step 2: Define your adversary

Adversaries & can: know public information: y, pk

get no message/signature pair
get list of message/signature pairs

submit arbitrary message to sign

THE ESSENCE OF PROVABLE SECURITY

» Core question: what does “secure” mean?

= “Secure encryption” vs. “Secure signature scheme”

» Say a scheme is secure against all known attacks

= ... will it be secure against a new, yet unknown
attack?

» Step 3: Define the security condition

Adversary ¢ can output fresh (m,S) which verifies,
with non-negligible probability (as a function of y)

THE ESSENCE OF PROVABLE SECURITY

» Core question: what does “secure” mean?

= “Secure encryption” vs. “Secure signature scheme”

» Say a scheme is secure against all known attacks

= ... will it be secure against a new, yet unknown
attack?

» Step 4: Propose a protocol

Instantiate the syntax given in Step 1.

E.g. give specific algorithms for KGen, Sign, V{.

THE ESSENCE OF PROVABLE SECURITY

» Core question: what does “secure” mean?

= “Secure encryption” vs. “Secure signature scheme”

» Say a scheme is secure against all known attacks

= ... will it be secure against a new, yet unknown
attack?

» Step 5: Choose security assumptions

For each primitive in the protocol, choose
assumptions

e Security Assumptions (e.g. IND-CCA encryption)
 Number Theoretical Assumptions (e.g. DDH, RSA)

THE ESSENCE OF PROVABLE SECURITY

» Core question: what does “secure” mean?

= “Secure encryption” vs. “Secure signature scheme”

» Say a scheme is secure against all known attacks

= ... will it be secure against a new, yet unknown
attack?

» Step 6: Prove security

For each property you defined in steps 1-3:

* Assume there exists an adversary # breaking

that security property with some probability &
Construct reduction B breaking some
assumption with probability f(g)

HOW REDUCTIONS WORK

Security assumptions are baseline

Reasoning:

If our protocol/primitive is insecure, then the
assumption 1s broken

But the assumption holds (by definition)
Conclusion: The protocol cannot be insecure

Caveat:
Say an assumption is broken (e.g. DDH easy to solve)
What does that say about our protocol?

We don’t know!

PART I11
ASSUMPTIONS

WE NEED COMPUTATIONAL ASSUMPTIONS

» Take our signature schemes (KGen, Sign, V{)

-

» Correctness: if parameters are well generated,
well-signed signatures always verify.

WE NEED COMPUTATIONAL ASSUMPTIONS

» Take our signature schemes (KGen, Sign, V{)

sk —>“?—> o
5ol

» Unforgeability: no adversary can produce
signature for a fresh message m*

But any £ can guess sk with probability 1/2|Sk| .

WE NEED COMPUTATIONAL ASSUMPTIONS

» Take our signature schemes (KGen, Sign, V{)

sk —>“?—> o
5ol

» Unforgeability: no adversary can produce
signature for a fresh message m*

And any ¢# can guess valid o with probability '/, .

SOME COMPUTATIONAL ASSUMPTIONS

Of the type: It 1s “hard” to compute x starting from vy.

How hard?

Usually no proof that the assumption holds
Mostly measured with respect to “best attack”
Sometimes average-case, sometimes worst-case

Relation to other assumptions:
A1“>”A2: break A2=>break A 1 stronger
A1l“"A2:break A 1 =>Dbreak A 2 weaker
A 1“=” A 2: both conditions hold equivalent

EXAMPLES: DL.OG, CDH, DDH

Background:
Finite field F, e.g. Z°) = {1, 2, ..., p-1} for prime p
Multiplication, e.g. modulop: 2(p —2) =2p —4=p—4
Element g of prime order q| (p — 1) :

g?=1(modp) AND g™+ 1(modp) Vm<gq
Cyclic group G=<g >={1,g9,9%..97 1}

DLog problem:
Pick x €z {1, ..., q}. Compute X = g* (mod p).
Given (p,q, g, X) find x.
Assumed hard.

EXAMPLES: DL.OG, CDH, DDH

16000F , «
14000 |
L]
12000 |
L]
10000 |
BOOO|

1 6000 -

W

4000

2000

% i i I'. i ..I‘. i .. | i ... 1
C-/ 20 40 60

80

i 1
100

DLog problem:

Pick x €z {1, ..., q}. Compute X = g* (mod p).

Given (p,q, g, X) find x.
Assumed hard.

EXAMPLES: DL.OG, CDH, DDH

DLog problem:
Pick x €; {1, ..., q}. Compute X = g* (mod p).
Given (p,q, g,X) find x.
Assumed hard.

CDH problem:
Pick x,y € {1, ..., q}. Compute X = g* (mod p);
Y = g” (mod p).
Given (p,q,g,X,Y) find g*Y.
Just to remind you: g*¥ = XY = Y* # XY = g**V

Solve D-LOG - Solve CDH
Solve CDH 4 Solve D-LOG

EXAMPLES: DL.OG, CDH, DDH

DLog problem:
Pick x €; {1, ..., q}. Compute X = g* (mod p).
Given (p,q, g,X) find x.

CDH problem:
Pick x,y €z {1, ..., q}. Compute X = g* (mod p);
Y = g” (mod p).
Given (p,q,g9,X,Y) find g*Y.

DDH problem:

Pick x,y,z €5 {1, ..., q}. Compute X,Y as above
Given (p,q,g,X,Y) distinguish g* from gZ.

How TO SOLVE THE DLOG PROBLEM

In finite fields mod p:
Brute force (guess x) — 6(q)

Baby-step-giant-step: memory/computation tradeoff;

OWq)
Pohlig-Hellman: small factors of q; O(log, q (logq + /P))

Pollard-Rho (+PH): O(/p) for biggest factor p of q
NFS, Pollard Lambda, ...

Index Calculus: exp((In q)g(ln(ln(q)))g)
Elliptic curves

Generic: best case is BSGS/Pollard-Rho
Some progress on Index-Calculus attacks recently

PARAMETER SIZE VS. SECURITY

Date Sym. RSA DLog DLog EC Hash
modulus Key Group GF(p)

<2020 100 2048 200 2048 200 200
<2030 128 2048 200 2048 256 256
>2030 128 3072 200 3072 256 256

RSA DLog DLog EC Hash
modulus Key Group GF(p)
2015 128 2048 224 2048 224 | SHA-224+
2016 128 2048 256 2048 256 | SHA-256+

<2021 128 3072 256 3072 256 | SHA-256+

USING ASSUMPTIONS

» Implicitly used for all the primitives you have
ever heard of

» Take ElGamal encryption:

= Setup: N-bit prime g, L-bit prime p with g | (p — 1)
Generator g such that Order(g mod p) = g

g? = kp + 1 for some k and g™ # np + 1 for any n

- Secret key: random sk € {1, ...,q — 1}
« Public key: pk = g% (mod p)

DLog: you can’t compute sk from pk

USING ASSUMPTIONS (2)

» Implicitly used for all the primitives you have
ever heard of

» Take ElGamal encryption:
= Setup: N-bit prime g, L-bit prime p with g | (p — 1)
Generator g such that Order(g mod p) = q
- Secret key: random sk € {1,...,q — 1}
- Public key: pk = g (mod p)

« Encryption: pick random r, output: (g", M - pk™) mod p

M-pkr _ M-(gSk)r
(gn)sk — (gn)sk

CDH: can’t compute g"* from g", g5¥ .

= Decryption:

USING ASSUMPTIONS (3)

» Implicitly used for all the primitives you have
ever heard of

» Take Diffie-Helman key exchange (2-party):
= Setup: p,q, g as before

L S

Alice Bob

Pick a A=g° ., Pick b

Compute: K = B¢ ¢

Compute: K = AP

DDH: can’t distinguish K from random, given A4, B ‘

PART IV
SECURITY MODELS

IDEAL PROVABLE SECURITY

(Given protocol m, assumptions Hy, ..., H

Real world

using

Ideal
world

“Real World” is hard to describe mathematically

PROVABLE SECURITY

Two-step process:

Real world

using

Modelled
world

using

PROVABLE SECURITY

Real world
using

COMPONENTS OF SECURITY MODELS

Adversarial a-priori knowledge & computation:
Who is my adversary? (outsider, malicious party, etc.)
What does my adversary learn?

Adversarial interactions (party-party, adversary-
party, adversary-adversary — sometimes)

What can my adversary learn

How can my adversary attack?

Adversarial goal (forge signature, find key,
distinguish Alice from Bob)

What does my adversary want to achieve?

GAME-BASED SECURITY

Participants
Adversary o2 plays a game against a challenger €
Adversary = attacker(s), has all public information

Challenger = all honest parties, has public
information and secret information

Attack

Oracles: &# makes oracle queries to € to learn
information

Test: special query by o to €, to which & responds
sometimes followed by more oracle queries
Win/Lose: a bit output by € at the end of the game

CANONICAL GAME-BASED SECURITY

4)
Setup \
%
pPar
N v
<> Learn
% &he” "ohGen «—| €
\ _®_J
<> Learn é
4 resp >
Oor1 |« Result
\§ J

Game Structure

Setup: generate game
parameters s/pPar

Learn: &2 queries oracles;
€ answers using s

ChGen: € generates
challenge chg*

Result: € learns
whether &£ has won or

lost

EXAMPLE 1: SIGNATURE SCHEMES

Intuition: a signature scheme (KGen, Sign, Vf) 1s
secure 1f and only if:

% should not be able to forge signatures

Formal security definition: UNF-CMA

(sk,pk) « KGen(1%) O0Sign(*)

. 5 N
(m, o) « A9Sign(» (1%, pk) On input m, set

] . , o < Sign(sk, m)
Set L= {mi,al-}l-=1)___,N Wlth O; < OSlgn(mi)

Output o

A wins iff: Vf(pk,m,o0) =1 and {m,*}/€ L

EXAMPLE 2: PKE

Intuition: a PK encryption scheme (KGen, Enc, Dec)
1s secure 1f and only if:

2 should not be able to learn encrypted messages

Formally defining this (without decryptions):

(sk,pk) < KGen(1%)
mep M
| ¢ < Enc(pk,m)
m’ « A(1%,pk, c)

| A wins iff: m =m'

EXAMPLE 2: PKE

Intuition: a PK encryption scheme (KGen, Enc, Dec)
1s secure 1f and only if:

2 should not be able to learn encrypted messages

What if &£ can learn some ciphertext/plaintext tuples?

ODec(*)

(sk,pk) < KGen(1%)
ready « A9Pec()" (12 pk)

On input ¢’, output
m « Dec(sk, ')

meep M
¢ < Enc(pk, m) ODec'(*)
! I(* M
m' « APPec’) (19, pk, ¢) On input ¢’ # ¢, output

o , m <« Dec(sk, c')
L Awins iff: m=m Else, output 2

EXAMPLE 2: PKE

Intuition: a PK encryption scheme (KGen, Enc, Dec)
1s secure 1f and only if:

2 should not be able to learn encrypted messages

What if &£ can learn a single bit of the message?

1 bit can make a difference in a small message space!

2 should not be able to learn even 1 bit of an encrypted
message

EXAMPLE 2: PKE

Intuition: a PK encryption scheme (KGen, Enc, Dec)
1s secure 1f and only if:

% must not learn even 1 bit of an encrypted message

Formal definition: IND-CCA

| (sk,pk) < KGen(1%) ODec(x)

(my,my) « AOPec™ (12, pk)

On input ¢’, output
m « Dec(sk, ')

b <¢ {0,1}
¢ « Enc(pk,m;) ODec'(*)
I(* M
d < AOPec(I7 (1%, pk,) On input ¢’ # ¢, output

o m <« Dec(sk, c')
| Awins iff: b =d Else, output 2

MEASURING ADVERSARIAL SUCCESS

Winning a game; winning condition:
Depends on relation R on (*, < game >), with < game > =
full game input (of honest parties and %)

Finally, &2 outputs x, wins if (x, < game >) € R

Success probability:
What is the probability that o2 “wins” the game?

What is the probability measured over? (e.g. randomness
in < game >, sometimes probability space for keys, etc.)

Advantage of Adversary:

How much better is ¢# than a trivial adversary?

TRIVIAL ADVERSARIES

Example 1: Signature unforgeability
% has to output a valid signature for message m
Trivial attacks: (1) guess signature (probability 27171
(2) guess secret key (probability 2715k

(3) re-use already-seen o
Goal: &£ outputs valid signature for fresh message m

Example 2: Distinguish real from random
7 has to output a single bit: real (0) or random (1)

Trivial attacks: (1) guess the bit (probability 1/,)
(2) guess secret key (probability 2715k

ADVERSARIAL ADVANTAGE

Forgery type games:
% has to output a string of a “longer” size

Best trivial attacks: guess the string or guess the key

Advantage:
Adv[A] = Prob[4 wins the game]

Distinguishability-type games:
% must distinguish between 2 things: left/right,
real/random

Best trivial attacks: guess the bit (probability 1/,)
Advantage (different ways of writing it):

Adv[A] = Prob[A wins the game] — 1/,

Adv[A] = 2 | Prob[A wins the game] — 1/, |

DEFINING SECURITY

Exact security definitions:

Input: number of significant queries of &2, execution
time, advantage of /2

Example definition:

4 A signature scheme (KGen, Sign, Vf) is (N, t,)-)
unforgeable under chosen message attacks (UNF-CMA) if
for any adversary &, running in time t, making at most N

queries to the Signing oracle, it holds that:

_ Adv[A]: = Prob[A wins the game] < ¢)

If a scheme is (N, t,1)-UNF-CMA, then the scheme is
Insecure!

DEFINING SECURITY

Asymptotic security:

Consider behaviour of € as a function of the size of the
security parameter 1¢:

4 A signature scheme (KGen, Sign, Vf) is (N, t,)-
unforgeable under chosen message attacks (UNF-CMA) if
for any adversary &, running in time t, making at most N

queries to the Signing oracle, it holds that:
_ Adv[A]: = Prob[A wins the game] < ¢

~

D%
<

(" The signature 1s (N, t)-unforgeable under chosen
message attacks if for any adversary 2 as above, it holds:

Adv[A] < negl(1%)

_

J

SIMULATION-BASED DEFINITIONS

Game-based definitions
Well understood and studied

Can capture attacks up to “one bit of information”
What else do we need?

Zero-Knowledge: “nothing leaks about...”

Real world: “real” parties, running protocol in the
pre-sence of a “local” adversary

Ideal world: “dummy” parties, simulator that
formalizes the most leakage allowed from the
protocol

“Global” adversary: distinguisher real/ideal world — if
simulator 1s successful, then real world leaks as
much as 1deal world

SECURITY MODELS — CONCLUSIONS

Requirements:

Realistic models: capture “reality” well, making
proofs meaningful

Precise definitions: allow quantification/classification
of attacks, performance comparisons for schemes,
generic protocol-construction statements

Exact models: require subtlety and finesse in
definitions, in order to formalize slight relaxations of
standard definitions

Provable security 1s an art, balancing strong security
requirements and security from minimal assumptions

PART V
PROOFS OF SECURITY

GAME HOPPING

Start from a given security game G,
Modify G, a bit (limiting &4 to get G,

Show that for protocol , games G, and G, are equivalent
(under assumption A), up to negligible factor &;:

Go =g, G1: Prob[A wins Gy] < Prob[A wins G;] + &]

Hop through G;, Gs, ..., G, (such that G;,_; =, G; for all i)

For last game G, find Prob[A4 wins G,]|; then:

n

Prob[A wins G| < Z & + Prob[A wins G|
i=1

Method 1: Reduce game indistinguishability to
assumption or hard problem

If there exists a distinguisher £ between G;_; and G;

winning with probability 1/, + 6 then there exists an
adversary B against assumption H; winning with

probability §" = f(§)
So, Prob[4 wins Gy] — Prob[Awins G;] < § + &' =: &

Method 2: Reduce “difference” between games to
assumption or hard problem

By construction, &2 can win G, more easily than G; (since 2
1s more limited in G;)
If there exists an adversary B that can “take advantage of”

the extra ability it has in G, to win w.p. Prob[A wins G| + 6,
then there exists B against H; winning w.p. §'... (as above)

GAME EQUIVALENCE & REDUCTIONS

Reduction: algorithm R_taking adversary o against a
game, outputting adversary B against another game/hard

problem R > B

Intuition: if there exists an adversary ¢# against game G,
this same adversary can be used by ¢R_to obtain B against

!

G . . : : : e
% interacts with challenger €in G, B Interacts with €'1n G
In order to fully use &4, B needs to simulate €:

* #queries €in game G: B must answer query
* % sends challenge input to €: _B must send challenge

* % answers challenge: B uses response in game G’

PART VI
AN EXAMPLE

SECURE SYMMETRIC-KEY
AUTHENTICATION

Alice wants to authenticate to Bob, with whom
she shares a secret key

K
Alic Bob seed
e
Choose
, chg chg < PRG(seed)
rsp < PRFg(chg)
rsp . Ver‘ify:

rsp = PRFg(chg)

SECURITY OF AUTHENTICATION

K

Alic Bob
e

Authenticatio

v 7

Nobody but Alice must authenticate to Bob

Who 1s my adversary?
o A man-in-the-middle

What can they do?

o Intercept messages, send messages (to Alice or Bob), eavesdrop

What is they goal of #?
o Make Bob accept ¢# as being Alice

N
>

A

TRIVIAL ATTACKS: RELAY

K | Alic 6/

Bob

e chg

A

seed

chg

A

rsp

rsp

Relay attacks bypass any kind of cryptography: encryp-

tion, hashing, signatures, etc.

Countermeasure: distance bounding (we’ll see it later)

SECURE AUTHENTICATION: DEFINITION

Session ID: tuple < chg,rsp > used between partners
Oracles:
NewSession(*): input either P, = Alice or P, = Bob

outputs session “handle” ©

Send(*,*): input handle m and message m € M U {Prompt}

transmits m to partner in w, outputs m’

Result(*): input a handle = with partner P,
outputs 1 if P, accepted authentication in ,

0 if P, rejected, and 2 otherwise

SECURE AUTHENTICATION: GAME

Game ImpSec:

k <p KSpace(1%)
seed < SSpace (1%)

done « ANewSession(*),Send(*,*),Result(*)(1“)

o wins iff 3 m output by NewSession(P,) such that:

 Result(m) = 1;
* There exists no ' output by NewSession(P;) such
that sid(m) = sid(m")

Protocol 1s (N, N5, €)-impersonation secure iff. no adver-
sary 2 using N; sessions with P; wins w.p. = ¢.

Adv|[A] := Prob[A wins]

PRGS AND PRFS

K Alic
e

Bob

Choose

chg

rsp < PRFg(chg)

rsp . Verify:

seed

chg < PRG(seed)

rsp = PRFx(chg)

Pseudorandomness of PRG:

key <5 Kspace
d « AEvalb()
Awinsiff.d = b

Eval, ():

if b = 0, return Rand()
else, return PRG(key)

PRGS AND PRFS

K Alic Bob seed
e
Choose
chg chg < PRG(seed)

rsp < PRFg(chg) sp Verify:

rsp = PRFg(chg)

Pseudorandomness of PRF:

Evalb ()
key <—gvall(s(1))ace choose x «p X
d « A"V if b = 0, return Rand(x)

Awinsiff. d = b else, return PRFy¢y (x)

PROVING SECURITY

K Alic Bob seed

e
Choose

chg chg < PRG(seed)

rsp < PRFg(chg) oD Verify:

rsp = PRFx(chg)

Intuition:

If the PRG 1s good, then each chg is (almost) unique (up to
collisions)

If the PRF is good, then each rsp looks random to adversary
Unless adversary relays, no chance to get right answer

PROVING SECURITY

K Alic Bob seed K

e
Choose

chg chg < PRG(seed)

A

Proof, step 1:
Game G,: Game ImpSec
Game G;: Replace chg output by P, by random
Equivalence: Gy = G;: if there exists e-distinguisher &2
between G, and Gy, then there exists B against PRG winning
W.p. €

Basically the intuition is that if &2 can distinguish between the two
games, he can distinguish real (PRG) from truly random challenges

PROVING SECURITY

K Alic Bob seed K
e
Choose
. Chg chg < PRG(seed)

Proof, equivalence G, = G4:
3 e-distinguisher £ for Gy / G; = 3 B winning PRG w.p. ¢

Simulation: B chooses key K < KSpace and simulate any requests to
Send(m, Prompt) by Eval, () queries in PRG game

Finally o# guesses either game G, (B outputs 1) or G; (B outputs 0)

Game PRG Evaly ():
if b = 0, return Rand()

d K
seed < Kspace else, return PRG(key)

d « BEvalb()
Bwinsiff. d =b

PROVING SECURITY

K

Alic Bob seed

e
Choose

chg chg < PRG(seed)

A

Proof, step 2:

Game G,: Game ImpSec
Game G;: Replace chg output by P, by random
Game G,: Abort if collision in chg

Equivalence: G; = G,: collisions in random strings occur in 2
different sessions w.p. (1/,)I"8l . But we have a total of N,
sessions, so the total probability of a collision is:

N,
2—Ichg]
(2)

PROVING SECURITY

K Alic Bob seed

e) chg

rsp < PRFg(chg) rsp

A 4

Proof, step 3:
Game G,: Game ImpSec
Game G;: Replace chg output by P, by random
Game G,: Abort if collision in chg

Game G3: replace honest responses by consistent, truly
random strings

Equivalence: G, = G3: Similar to reduction to PRG, only this
time it 1s to the pseudorandomness of the PRF.

PROVING SECURITY

K Alic Bob seed K

e) chg

rsp < PRFg(chg) rsp

A 4

Proof, step 4:
Game G,: Game ImpSec
Game G;: Replace chg output by P, by random
Game G,: Abort if collision in chg

Game G3: replace honest responses by consistent, truly
random strings

At this point, the best the adversary can do 1s to guess a
correct chg/rsp, i.e. Prob[A wins G3] = N, - 27Ichgl 4 N, . 2~Irspl

PUTTING IT TOGETHER

ImpSec

Prob[A wins ImpSec| < Prob[A wins G;] + Adv/[.

Prob|[A wins G;]| < Prob[A wins G,] + (

Gy

N,
2—|chg]|
(2)

G,

B against PRG]

EPRF

N,
2

) 5~Ichg|

Gs

Prob[A wins G,] < Prob[A wins G3] + Adv[B against PRF]

Prob[A wins G3] = N, - 2~Ich8l 4 N, . 2-Irspl

SECURITY STATEMENT

For every (N4, N,, €)- impersonation security
adver-sary g2 against the protocol, there exist:

An gppg-distinguisher against PRG
An gppp-distinguisher against PRF

such that:

E < &prg T EprrF T (1\;2) 2_|Chg| + 1\[1 . 2—|Chg| + NZ : 2—|1‘Sp|

PART VII
CONCLUSIONS

PROVABLE SECURITY

Powertul tool

We can prove that a protocol 1s secure by design
Captures generic attacks within a security model
Can compare different schemes of same “type”

3 types of schemes:

Provably Secure
Attackable (found an attack)
We don’t know (unprovable, but not attackable)

