
INTRODUCTION TO PROVABLE

SECURITY

Models, Adversaries, Reductions



CRYPTOGRAPHY / CRYPTOLOGY

 “from Greek κρυπτός kryptós, "hidden, secret";

and γράφειν graphein, "writing", or -λογία -logia, "study",

respectively”

 “is the practice and study of techniques for secure

communication in the presence of third parties

(called adversaries).”

Source : www.wikipedia.org

https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wiktionary.org/wiki/en:%CE%BA%CF%81%CF%85%CF%80%CF%84%CF%8C%CF%82
https://en.wiktionary.org/wiki/en:%CE%B3%CF%81%CE%AC%CF%86%CF%89#Ancient_Greek
https://en.wiktionary.org/wiki/en:-%CE%BB%CE%BF%CE%B3%CE%AF%CE%B1#Greek
https://en.wikipedia.org/wiki/-logy
https://en.wikipedia.org/wiki/Secure_communication
https://en.wikipedia.org/wiki/Adversary_(cryptography)


SOME CRYPTOGRAPHIC GOALS

 Confidentiality

 Content of conversation remains hidden

 Authenticity

 Message is really sent by specific sender

 Integrity

 Message has not been modified

 Privacy:

 Sensitive (user) data remains hidden

 Covertcy

 The fact that a conversation is taking place is hidden

 ….



CONFIDENTIALITY

 Parties exchange messages

 Parties store documents (or strings e.g. passwords)

No unauthorized party can learn anything 
about contents.



AUTHENTICITY

 “Online”: Alice proves legitimacy to Bob in real-time

fashion (interactively)

No unauthorized party can impersonate a user

 “Offline”: Alice generates proof of identity to be

verified offline by Bob

No unauthorized party can forge the proof



INTEGRITY

 Parties send or receive messages

No modification to content of message(s)



HOW CRYPTOGRAPHY WORKS

 Use building blocks (primitives)

 … either by themselves (hashing for integrity)

 … or in larger constructions (protocols, schemes)

 Security must be guaranteed even if mechanism 

(primitive, protocol) is known to adversaries

 Steganography vs. cryptography:

 Steganography: hide secret information in plain sight

 Cryptography: change secret information to 

something else, then send it 



A BRIEF HISTORY

 “Stone age”: secrecy of algorithm

 Substitution and permutation (solvable by hand)

 Caesar cipher, Vigenère cipher, etc.

 “Industrial Age”: automation of cryptology

 Cryptographic machines like Enigma

 Fast, automated permutations (need machines to solve)

 “Contemporary Age”: provable security

 Starting from assumptions (e.g. a one-way function), 

I build a scheme, which is “provably” secure in model



PART II

THE PROVABLE SECURITY METHOD



SECURITY BY TRIAL-AND-ERROR

 Identify goal (e.g. confidentiality in P2P networks)

 Design solution – the strategy:

 Propose protocol

 Search for an attack

 If attack found, fix (go to first step)

 After many iterations or some time, halt

 Output: resulting scheme

 Problems:

 What is “many” iterations/ “some” time?

 Some schemes take time to break: MD5, RC4…



PROVABLE SECURITY

 Identify goal. Define security:

 Syntax of the primitive: e.g. algorithms (KGen, Sign, Vf) 

 Adversary (e.g. can get signatures for arbitrary msgs.)

 Security conditions (e.g. adv. can’t sign fresh message)

 Propose a scheme (instantiate syntax)

 Define/choose security assumptions

 Properties of primitives / number theoretical problems

 Prove security – 2 step algorithm:

 Assume we can break security of scheme (adv. A)

 Then build “Reduction” (adv. B) breaking assumption



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 1: Define your primitive (syntax)

Signature Scheme: algorithms (KGen, Sign, Vf)

* KGen(1𝛾)  outputs (sk, pk)

* Sign(sk,m) outputs S (prob.)

* Vf(pk,m,S) outputs 0 or 1 (det.)

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 2: Define your adversary

Adversaries A can: know public information: 𝛾, pk

get no message/signature pair

get list of message/signature pairs

submit arbitrary message to sign 

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 3: Define the security condition

Adversary A can output fresh (m,S) which verifies, 

with non-negligible probability (as a function of 𝛾)

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 4: Propose a protocol

Instantiate the syntax given in Step 1. 

E.g. give specific algorithms for KGen, Sign, Vf. 

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 5: Choose security assumptions

For each primitive in the protocol, choose 

assumptions

• Security Assumptions (e.g. IND-CCA encryption)

• Number Theoretical Assumptions (e.g. DDH, RSA)

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 6: Prove security

For each property you defined in steps 1-3:

• Assume there exists an adversary A breaking 

that security property with some probability 𝜀

• Construct reduction B breaking some 

assumption with probability f(𝜀)

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



HOW REDUCTIONS WORK

 Reasoning:

 If our protocol/primitive is insecure, then the 

assumption is broken

 But the assumption holds (by definition)

 Conclusion: The protocol cannot be insecure

 Caveat:

 Say an assumption is broken (e.g. DDH easy to solve)

 What does that say about our protocol?

 Security assumptions are baseline

We don’t know!



PART III

ASSUMPTIONS



WE NEED COMPUTATIONAL ASSUMPTIONS

 Correctness: if parameters are well generated, 

well-signed signatures always verify.

 Take our signature schemes (KGen, Sign, Vf)

KGen
1𝑠

Signsk

pk

m

𝜎

Vf 0/1



WE NEED COMPUTATIONAL ASSUMPTIONS

 Unforgeability: no adversary can produce 

signature for a fresh message m*

 Take our signature schemes (KGen, Sign, Vf)

KGen
1𝑠

Signsk

pk

m

𝜎

Vf 0/1

But any A can guess 𝑠𝑘 with probability ൗ1 2|𝑠𝑘|



WE NEED COMPUTATIONAL ASSUMPTIONS

 Unforgeability: no adversary can produce 

signature for a fresh message m*

 Take our signature schemes (KGen, Sign, Vf)

KGen
1𝑠

Signsk

pk

m

𝜎

Vf 0/1

And any A can guess valid 𝜎 with probability ൗ1 2|𝜎|



SOME COMPUTATIONAL ASSUMPTIONS

 Of the type: It is “hard” to compute 𝑥 starting from 𝑦.

 How hard? 

 Usually no proof that the assumption holds

 Mostly measured with respect to “best attack”

 Sometimes average-case, sometimes worst-case

 Relation to other assumptions: 

 A 1 “→” A 2:  break A 2 => break A 1

 A 1 “←” A 2: break A 1 => break A 2

 A 1 “” A 2: both conditions hold

stronger

weaker

equivalent



EXAMPLES: DLOG, CDH, DDH

 Background:

 Finite field F, e.g. Z*
p = {1, 2, … , p-1} for prime p

 Multiplication, e.g. modulo p: 2 𝑝 − 2 = 2𝑝 − 4 = 𝑝 − 4

 Element 𝑔 of prime order 𝑞| (𝑝 − 1) : 

𝑔𝑞 = 1 (mod 𝑝) AND  𝑔𝑚 ≠ 1 mod 𝑝 ∀ 𝑚 < 𝑞

 Cyclic group  G = < 𝑔 > = {1, 𝑔, 𝑔2…𝑔𝑞−1}

 DLog problem:

 Pick 𝑥 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋 find 𝑥.

 Assumed hard.



EXAMPLES: DLOG, CDH, DDH

 DLog problem:

 Pick 𝑥 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋 find 𝑥.

 Assumed hard.



EXAMPLES: DLOG, CDH, DDH

 DLog problem:

 Pick 𝑥 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋 find 𝑥.

 Assumed hard.

 CDH problem:

 Pick 𝑥, 𝑦 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 mod 𝑝 ;

𝑌 = 𝑔𝑦 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋, 𝑌 find 𝑔𝑥𝑦.

Just to remind you: 𝒈𝒙𝒚 = 𝑿𝒚 = 𝒀𝒙 ≠ 𝑿𝒀 = 𝒈𝒙+𝒚

 Solve D-LOG → Solve CDH

 Solve CDH → Solve D-LOG



EXAMPLES: DLOG, CDH, DDH

 DLog problem:

 Pick 𝑥 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋 find 𝑥.

 CDH problem:

 Pick 𝑥, 𝑦 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 mod 𝑝 ;

𝑌 = 𝑔𝑦 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋, 𝑌 find 𝑔𝑥𝑦.

 DDH problem:

 Pick 𝑥, 𝑦, 𝑧 ∈𝑅 {1, … , 𝑞}. Compute 𝑋, 𝑌 as above

 Given 𝑝, 𝑞, 𝑔, 𝑋, 𝑌 distinguish 𝑔𝑥𝑦 from 𝑔𝑧.



HOW TO SOLVE THE DLOG PROBLEM

 In finite fields mod 𝑝:
 Brute force (guess 𝑥) – O(𝑞)
 Baby-step-giant-step: memory/computation tradeoff; 

O( 𝑞)

 Pohlig-Hellman: small factors of 𝑞; O(log𝑝 𝑞 (log 𝑞 + 𝑝))

 Pollard-Rho (+PH): O( 𝑝) for biggest factor 𝑝 of 𝑞

 NFS, Pollard Lambda, …

 Index Calculus: exp( ln 𝑞
1

3 ln(ln(𝑞))
2

3)

 Elliptic curves

 Generic: best case is BSGS/Pollard-Rho

 Some progress on Index-Calculus attacks recently



PARAMETER SIZE VS. SECURITY

Date Sym. RSA 

modulus

DLog

Key

DLog

Group

EC

GF(p)

Hash

<2020 100 2048 200 2048 200 200

<2030 128 2048 200 2048 256 256

>2030 128 3072 200 3072 256 256

Date Sym. RSA 

modulus

DLog

Key

DLog

Group

EC

GF(p)

Hash

2015 128 2048 224 2048 224 SHA-224+

2016 128 2048 256 2048 256 SHA-256+

<2021 128 3072 256 3072 256 SHA-256+

ANSSI

BSI



USING ASSUMPTIONS

 Implicitly used for all the primitives you have 

ever heard of

 Take ElGamal encryption:

 Setup: 𝑁-bit prime 𝑞, 𝐿-bit prime 𝑝 with 𝑞 | (𝑝 − 1)

Generator 𝑔 such that Order 𝑔 mod 𝑝 = 𝑞

 Secret key: random 𝑠𝑘 ∈ {1,… , 𝑞 − 1}

 Public key: 𝑝𝑘 = 𝑔𝑠𝑘 (mod 𝑝)

𝒈𝒒 = 𝒌𝒑 + 𝟏 for some 𝒌 and 𝒈𝒎 ≠ 𝒏𝒑 + 𝟏 for any 𝒏

DLog: you can’t compute 𝑠𝑘 from 𝑝𝑘



USING ASSUMPTIONS (2)

 Implicitly used for all the primitives you have 

ever heard of

 Take ElGamal encryption:

 Setup: 𝑁-bit prime 𝑞, 𝐿-bit prime 𝑝 with 𝑞 | (𝑝 − 1)

Generator 𝑔 such that Order 𝑔 mod 𝑝 = 𝑞

 Secret key: random 𝑠𝑘 ∈ {1,… , 𝑞 − 1}

 Public key: 𝑝𝑘 = 𝑔𝑠𝑘 (mod 𝑝)

 Encryption: pick random 𝑟, output: 𝑔𝑟 , 𝑀 ∙ 𝑝𝑘𝑟 mod 𝑝

 Decryption: 
𝑀∙𝑝𝑘𝑟

𝑔𝑟 𝑠𝑘 =
𝑀∙(𝑔𝑠𝑘)𝑟

𝑔𝑟 𝑠𝑘

CDH: can’t compute 𝑔𝑟∙𝑠𝑘 from 𝑔𝑟, 𝑔𝑠𝑘



USING ASSUMPTIONS (3)

 Implicitly used for all the primitives you have 

ever heard of

 Take Diffie-Helman key exchange (2-party):

 Setup: 𝑝, 𝑞, 𝑔 as before

Alice Bob

Pick 𝑎 𝐴 = 𝑔𝑎 Pick 𝑏

𝐵 = 𝑔𝑏

Compute: 𝐾 = 𝐴𝑏Compute: 𝐾 = 𝐵𝑎

DDH: can’t distinguish 𝐾 from random, given 𝐴, 𝐵



PART IV

SECURITY MODELS



IDEAL PROVABLE SECURITY

 Given protocol 𝜋, assumptions 𝐻1, … , 𝐻𝑘

Proof

under 𝑯𝟏, … , 𝑯𝒌

Real world

using 𝜋

Ideal 

world

“Real World” is hard to describe mathematically



PROVABLE SECURITY

 Two-step process:

Real world

using 𝜋
Modelled 

world

using 𝜋



PROVABLE SECURITY

Ideal 

world

Real world

using 𝜋

Proof

under 𝑯𝟏, … ,𝑯𝒌



COMPONENTS OF SECURITY MODELS

 Adversarial à-priori knowledge & computation:

 Who is my adversary? (outsider, malicious party, etc.)

 What does my adversary learn?

 Adversarial interactions (party-party, adversary-

party, adversary-adversary – sometimes) 

 What can my adversary learn 

 How can my adversary attack?

 Adversarial goal (forge signature, find key, 

distinguish Alice from Bob) 

 What does my adversary want to achieve?



GAME-BASED SECURITY

 Participants

 Adversary A plays a game against a challenger C
 Adversary = attacker(s), has all public information

 Challenger = all honest parties, has public 

information and secret information

 Attack 
 Oracles: A makes oracle queries to C to learn 

information

 Test: special query by A to C, to which A responds

sometimes followed by more oracle queries

 Win/Lose: a bit output by C at the end of the game



CANONICAL GAME-BASED SECURITY

A C

Setup

s/pPar
pPar

Learn

ChGen
chg*

resp

Result0 or 1

Learn
(s)

Game Structure

 Setup: generate game 

parameters s/pPar

 Learn: A queries oracles;   

C answers using s

 ChGen: C generates 

challenge chg*

 Result: C learns 

whether A has won or 

lost



EXAMPLE 1: SIGNATURE SCHEMES

 Intuition: a signature scheme (KGen, Sign, Vf) is 

secure if and only if: 

 Formal security definition: UNF-CMA

 A should not be able to forge signatures

𝑠𝑘, 𝑝𝑘 ← KGen 1𝛼

𝑚, 𝜎 ← 𝐴𝑂𝑆𝑖𝑔𝑛 ∗ N
(1𝛼 , 𝑝𝑘)

Set : L = {𝑚𝑖 , 𝜎𝑖}𝑖=1,…,N with 𝜎𝑖 ← 𝑂𝑆𝑖𝑔𝑛(𝑚𝑖)

𝐴 wins iff: Vf 𝑝𝑘,𝑚, 𝜎 = 1 and   𝑚,∗ ∈ L

𝑂𝑆𝑖𝑔𝑛(∗)

On input  𝑚, set

𝜎 ← Sign(𝑠𝑘,𝑚)

Output 𝜎



EXAMPLE 2: PKE

 Intuition: a PK encryption scheme (KGen, Enc, Dec)
is secure if and only if: 

 A should not be able to learn encrypted messages

 Formally defining this (without decryptions):

𝑠𝑘, 𝑝𝑘 ← KGen 1𝛼

𝑚 ←𝑅 𝑀

𝑐 ← Enc 𝑝𝑘,𝑚

𝑚′ ← A 1𝛼 , 𝑝𝑘, 𝑐

𝐴 wins iff: 𝑚 = 𝑚′



EXAMPLE 2: PKE

 Intuition: a PK encryption scheme (KGen, Enc, Dec)
is secure if and only if: 

 A should not be able to learn encrypted messages

 What if A can learn some ciphertext/plaintext tuples?

𝑠𝑘, 𝑝𝑘 ← KGen 1𝛼

ready ← 𝐴𝑂𝐷𝑒𝑐(∗)
𝑁
1𝛼, 𝑝𝑘

𝑚 ←𝑅 𝑀

𝑐 ← Enc 𝑝𝑘,𝑚

𝑚′ ← 𝐴𝑂𝐷𝑒𝑐′(∗)
𝑀
1𝛼 , 𝑝𝑘, 𝑐

𝐴 wins iff: 𝑚 = 𝑚′

𝑂𝐷𝑒𝑐(∗)

On input 𝑐′, output

𝑚 ← Dec(𝑠𝑘, 𝑐′)

𝑂𝐷𝑒𝑐′(∗)

On input 𝑐′ ≠ 𝑐, output

𝑚 ← Dec(𝑠𝑘, 𝑐′)
Else, output ℶ



EXAMPLE 2: PKE

 Intuition: a PK encryption scheme (KGen, Enc, Dec)
is secure if and only if: 

 A should not be able to learn encrypted messages

What if A can learn a single bit of the message?

1 bit can make a difference in a small message space!

 A should not be able to learn even 1 bit of an encrypted 

message



EXAMPLE 2: PKE

 Intuition: a PK encryption scheme (KGen, Enc, Dec)
is secure if and only if: 

 A must not learn even 1 bit of an encrypted message

 Formal definition: IND-CCA

𝑠𝑘, 𝑝𝑘 ← KGen 1𝛼

(𝑚1, 𝑚2) ← 𝐴𝑂𝐷𝑒𝑐(∗)
𝑁
1𝛼 , 𝑝𝑘

𝑏 ←𝑅 {0,1}

𝑐 ← Enc 𝑝𝑘,𝑚𝑏

𝑑 ← 𝐴𝑂𝐷𝑒𝑐′(∗)
𝑀
1𝛼, 𝑝𝑘, 𝑐

𝐴 wins iff: 𝑏 = 𝑑

𝑂𝐷𝑒𝑐(∗)

On input 𝑐′, output

𝑚 ← Dec(𝑠𝑘, 𝑐′)

𝑂𝐷𝑒𝑐′(∗)

On input 𝑐′ ≠ 𝑐, output

𝑚 ← Dec(𝑠𝑘, 𝑐′)
Else, output ℶ



MEASURING ADVERSARIAL SUCCESS

 Winning a game; winning condition:

 Depends on relation 𝑅 on (∗,< game >), with < game > =

full game input (of honest parties and A)

 Finally, A outputs 𝑥, wins if (𝑥, < game >) ∈ 𝑅

 Success probability:
 What is the probability that A “wins” the game?

 What is the probability measured over? (e.g. randomness 

in < game >, sometimes probability space for keys, etc.)

 Advantage of Adversary:
 How much better is A than a trivial adversary?



TRIVIAL ADVERSARIES

 Example 1: Signature unforgeability
 A has to output a valid signature for message 𝑚

 Trivial attacks: (1) guess signature (probability 2−|𝜎|)

(2) guess secret key (probability 2−|𝑠𝑘|)

(3) re-use already-seen 𝜎

 Goal: A outputs valid signature for fresh message 𝑚

 Example 2: Distinguish real from random
 A has to output a single bit: real (0) or random (1)

 Trivial attacks: (1) guess the bit (probability Τ1 2)

(2) guess secret key (probability 2−|𝑠𝑘|)



ADVERSARIAL ADVANTAGE

 Forgery type games: 
 A has to output a string of a “longer” size 

 Best trivial attacks: guess the string or guess the key

 Advantage: 

Adv 𝐴 = Prob[𝐴 wins the game]

 Distinguishability-type games: 
 A must distinguish between 2 things: left/right, 

real/random 

 Best trivial attacks: guess the bit (probability Τ1 2)

 Advantage (different ways of writing it): 

Adv 𝐴 = Prob 𝐴 wins the game − Τ1 2

Adv 𝐴 = 2 | Prob 𝐴 wins the game − Τ1 2 |



DEFINING SECURITY

 Exact security definitions: 

 Input: number of significant queries of A, execution 

time, advantage of A
 Example definition: 

A signature scheme (KGen, Sign, Vf) is 𝑁, 𝑡, 𝜀 -

unforgeable under chosen message attacks (UNF-CMA) if 
for any adversary A, running in time 𝑡, making at most 𝑁

queries to the Signing oracle, it holds that:

Adv 𝐴 := Prob 𝐴 wins the game ≤ 𝜀

 If a scheme is (𝑁, 𝑡, 1)-UNF-CMA, then the scheme is 

insecure!



DEFINING SECURITY

 Asymptotic security: 

 Consider behaviour of 𝜀 as a function of the size of the 

security parameter 1𝛼: 

A signature scheme (KGen, Sign, Vf) is 𝑁, 𝑡, 𝜀 -

unforgeable under chosen message attacks (UNF-CMA) if 
for any adversary A, running in time 𝑡, making at most 𝑁

queries to the Signing oracle, it holds that:

Adv 𝐴 := Prob 𝐴 wins the game ≤ 𝜀

The signature is 𝑁, 𝑡 -unforgeable under chosen 
message attacks if for any adversary A as above, it holds:

Adv 𝐴 ≤ negl(1𝛼)



SIMULATION-BASED DEFINITIONS

 Game-based definitions

 Well understood and studied

 Can capture attacks up to “one bit of information”

 What else do we need?

 Zero-Knowledge: “nothing leaks about…”

 Real world: “real” parties, running protocol in the 
pre-sence of a “local” adversary

 Ideal world: “dummy” parties, simulator that 
formalizes the most leakage allowed from the 
protocol 

 “Global” adversary: distinguisher real/ideal world – if 
simulator is successful, then real world leaks as 
much as ideal world



SECURITY MODELS – CONCLUSIONS

 Requirements:

 Realistic models: capture “reality” well, making 

proofs meaningful

 Precise definitions: allow quantification/classification 

of attacks, performance comparisons for schemes, 

generic protocol-construction statements

 Exact models: require subtlety and finesse in 

definitions, in order to formalize slight relaxations of 

standard definitions

 Provable security is an art, balancing strong security 

requirements and security from minimal assumptions



PART V

PROOFS OF SECURITY



GAME HOPPING

 Start from a given security game 𝐺0

 Modify 𝐺0 a bit (limiting A) to get 𝐺1

 Show that for protocol 𝜋, games 𝐺0 and 𝐺1 are equivalent

(under assumption A), up to negligible factor 𝜀1:

𝑮𝟎 ≅𝜺𝟏 𝑮𝟏: Prob 𝐴 wins 𝐺0 ≤ Prob 𝐴 wins 𝐺1 + 𝜀1

 Hop through 𝐺2, 𝐺3, … , 𝐺𝑛 (such that 𝐺𝑖−1 ≅𝜀𝑖 𝐺𝑖 for all 𝑖)   

 For last game 𝐺𝑛 find Prob 𝐴 wins 𝐺𝑛 ; then:

Prob 𝐴 wins 𝐺0 ≤

𝑖=1

𝑛

𝜀𝑖 + Prob[𝐴 wins 𝐺𝑛]



PROVING 𝐺𝑖−1 ≅𝜀𝑖 𝐺𝑖

 Method 1: Reduce game indistinguishability to 
assumption or hard problem

 If there exists a distinguisher A between 𝐺𝑖−1 and 𝐺𝑖
winning with probability Τ1 2+ 𝛿 then there exists an 
adversary B against assumption 𝐻1 winning with 
probability 𝛿′ = 𝑓(𝛿)

 So, Prob 𝐴 wins 𝐺0 − Prob 𝐴 wins 𝐺1 ≤ 𝛿 + 𝛿′ =: 𝜀1

 Method 2: Reduce “difference” between games to 

assumption or hard problem 

 By construction, A can win 𝐺0 more easily than 𝐺1 (since A
is more limited in 𝐺1)

 If there exists an adversary B that can “take advantage of” 

the extra ability it has in 𝐺0 to win w.p. Prob 𝐴 wins 𝐺1 + 𝛿, 

then there exists B against 𝐻1 winning w.p. 𝛿′… (as above)



GAME EQUIVALENCE & REDUCTIONS

• Reduction: algorithm R taking adversary A against a 

game, outputting adversary B against another game/hard 

problem RA → B

• Intuition: if there exists an adversary A against game 𝐺, 

this same adversary can be used by R to obtain B against 

𝐺′

• In order to fully use A, B needs to simulate C :

• A queries C in game 𝐺: B must answer query

• A sends challenge input to C : B must send challenge

• A answers challenge: B uses response in game 𝐺′

• A interacts with challenger C in 𝐺, B interacts with C’ in 𝐺′



PART VI

AN EXAMPLE



SECURE SYMMETRIC-KEY

AUTHENTICATION

 Alice wants to authenticate to Bob, with whom 

she shares a secret key

Alic

e

Bob

𝐾

Choose
chg ← PRG(seed)

seed

chg

rsp ← PRF𝐾(chg)

rsp Verify:
rsp = PRF𝐾(chg)



SECURITY OF AUTHENTICATION

Alic

e

Bob

𝐾

 Nobody but Alice must authenticate to Bob

 Who is my adversary? 

 A man-in-the-middle

Authenticatio

n

 What can they do?

 Intercept messages, send messages (to Alice or Bob), eavesdrop

 What is they goal of A?

 Make Bob accept A as being Alice



TRIVIAL ATTACKS: RELAY

Alic

e

Bob 𝐾𝐾

seed
chg

chg

rsp

rsp

 Relay attacks bypass any kind of cryptography: encryp-

tion, hashing, signatures, etc.

 Countermeasure: distance bounding (we’ll see it later)



SECURE AUTHENTICATION: DEFINITION

 Session ID: tuple < chg, rsp > used between partners

 Oracles: 

 NewSession(∗): input either 𝑃1 = Alice or 𝑃2 = Bob

outputs session “handle” 𝜋

 Send(∗,∗): input handle 𝜋 and message 𝑚 ∈ 𝑀 ∪ {Prompt}

transmits 𝑚 to partner in 𝜋, outputs 𝑚′

 Result(∗): input a handle 𝜋 with partner 𝑃2

outputs 1 if 𝑃2 accepted authentication in 𝜋, 

0 if 𝑃2 rejected, and ℶ otherwise



SECURE AUTHENTICATION: GAME

Game 𝐈𝐦𝐩𝐒𝐞𝐜:

𝑘 ←𝑅 KSpace(1𝛼)

seed ←𝑅 SSpace (1𝛼)

done ← 𝐴NewSession ∗ ,Send ∗,∗ ,Result ∗ (1∝)

A wins iff ∃ 𝜋 output by NewSession(𝑃2) such that:

• Result 𝜋 = 1;

• There exists no 𝜋′ output by NewSession 𝑃1 such
that sid 𝜋 = sid(𝜋′)

 Protocol is 𝑁1, 𝑁2, 𝜀 -impersonation secure iff. no adver-
sary A using 𝑁𝑖 sessions with 𝑃𝑖 wins w.p. ≥ 𝜀.

Adv 𝐴 ≔ Prob[𝐴 wins]



PRGS AND PRFS

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

rsp ← PRF𝐾(chg)
rsp Verify:

rsp = PRF𝐾(chg)

 Pseudorandomness of PRG:

key ←𝑅 Kspace

𝑑 ← 𝐴Eval𝑏()

𝐴 wins iff. 𝑑 = 𝑏

Eval𝑏():
if 𝑏 = 0, return Rand()

else, return PRG(key)

𝐾



PRGS AND PRFS

 Pseudorandomness of PRF:

key ←𝑅 Kspace

𝑑 ← 𝐴Eval𝑏()

𝐴 wins iff. 𝑑 = 𝑏

Eval𝑏():
choose 𝑥 ←𝑅 X
if 𝑏 = 0, return Rand(x)
else, return PRFkey(𝑥)

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

rsp ← PRF𝐾(chg)
rsp Verify:

rsp = PRF𝐾(chg)

𝐾



PROVING SECURITY

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

rsp ← PRF𝐾(chg)
rsp Verify:

rsp = PRF𝐾(chg)

𝐾

 Intuition:

 If the PRG is good, then each chg is (almost) unique (up to 

collisions)

 If the PRF is good, then each rsp looks random to adversary

 Unless adversary relays, no chance to get right answer



PROVING SECURITY

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

𝐾

 Proof, step 1:

 Game 𝐺0: Game ImpSec

 Game 𝐺1: Replace chg output by 𝑃2 by random

 Equivalence: 𝐺0 ≅ 𝐺1: if there exists 𝜀-distinguisher A
between 𝐺0 and 𝐺1, then there exists B against PRG winning 

w.p. 𝜀

 Basically the intuition is that if A can distinguish between the two 

games, he can distinguish real (PRG) from truly random challenges



PROVING SECURITY

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

𝐾

 Proof, equivalence 𝐺0 ≅ 𝐺1: 

 ∃ 𝜀-distinguisher A for 𝐺0 / 𝐺1 ֜ ∃ B winning PRG w.p. 𝜀

 Simulation: B chooses key 𝐾 ←𝑅 K𝑆pace and simulate any requests to 

Send(𝜋, Prompt) by Eval𝑏() queries in PRG game

 Finally A guesses either game 𝐺0 (B outputs 1) or 𝐺1 (B outputs 0)

Game PRG

seed ←𝑅 Kspace

𝑑 ← 𝐵Eval𝑏()

𝐵 wins iff. 𝑑 = 𝑏

Eval𝑏():
if 𝑏 = 0, return Rand()

else, return PRG(key)



PROVING SECURITY

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

𝐾

 Proof, step 2:

 Game 𝐺0: Game ImpSec

 Game 𝐺1: Replace chg output by 𝑃2 by random

 Game 𝐺2: Abort if collision in chg

 Equivalence: 𝐺1 ≅ 𝐺2: collisions in random strings occur in 2 

different sessions w.p. ( Τ1 2)
|chg| . But we have a total of 𝑁2

sessions, so the total probability of a collision is:

𝑁2
2

2−|chg|



PROVING SECURITY

Alic

e

Bob𝐾 seed
chg

𝐾

 Proof, step 3:

 Game 𝐺0: Game ImpSec

 Game 𝐺1: Replace chg output by 𝑃2 by random

 Game 𝐺2: Abort if collision in chg

 Game 𝐺3: replace honest responses by consistent, truly 

random strings

 Equivalence: 𝐺2 ≅ 𝐺3: Similar to reduction to PRG, only this 

time it is to the pseudorandomness of the PRF.

rsp ← PRF𝐾(chg) rsp



PROVING SECURITY

Alic

e

Bob𝐾 seed
chg

𝐾

 Proof, step 4:

 Game 𝐺0: Game ImpSec

 Game 𝐺1: Replace chg output by 𝑃2 by random

 Game 𝐺2: Abort if collision in chg

 Game 𝐺3: replace honest responses by consistent, truly 

random strings

 At this point, the best the adversary can do is to guess a 

correct chg/rsp, i.e. Prob 𝐴 wins 𝐺3 = 𝑁1 ∙ 2
− chg + 𝑁2 ∙ 2

−|rsp|

rsp ← PRF𝐾(chg) rsp



PUTTING IT TOGETHER

ImpSec 𝐺1

𝐺2

𝐺3

Prob 𝐴 wins ImpSec ≤ Prob 𝐴 wins 𝐺1 + Adv[𝐵 against PRG]

Prob 𝐴 wins 𝐺1 ≤ Prob 𝐴 wins 𝐺2 +
𝑁2
2

2−|chg|

𝜀PRG
𝑁2
2

2−|chg|

Prob 𝐴 wins 𝐺2 ≤ Prob 𝐴 wins 𝐺3 + Adv[𝐵 against PRF]

𝜀PRF

Prob 𝐴 wins 𝐺3 = 𝑁1 ∙ 2
− chg + 𝑁2 ∙ 2

−|rsp|



SECURITY STATEMENT

 For every 𝑵𝟏, 𝑵𝟐, 𝜺 - impersonation security
adver-sary A against the protocol, there exist:

 An 𝜺𝐏𝐑𝐆-distinguisher against PRG

 An 𝜺𝐏𝐑𝐅-distinguisher against PRF

such that:

𝜺 ≤ 𝜺𝐏𝐑𝐆 + 𝜺𝐏𝐑𝐅 +
𝑵𝟐
𝟐

𝟐− 𝒄𝒉𝒈 + 𝑵𝟏 ∙ 𝟐
− 𝒄𝒉𝒈 + 𝑵𝟐 ∙ 𝟐

−|𝒓𝒔𝒑|



PART VII

CONCLUSIONS



PROVABLE SECURITY

 Powerful tool 

 We can prove that a protocol is secure by design 

 Captures generic attacks within a security model

 Can compare different schemes of same “type”

 3 types of schemes:

 Provably Secure

 Attackable (found an attack)

 We don’t know (unprovable, but not attackable)


