
INTRODUCTION TO PROVABLE

SECURITY

Models, Adversaries, Reductions



CRYPTOGRAPHY / CRYPTOLOGY

 “from Greek κρυπτός kryptós, "hidden, secret";

and γράφειν graphein, "writing", or -λογία -logia, "study",

respectively”

 “is the practice and study of techniques for secure

communication in the presence of third parties

(called adversaries).”

Source : www.wikipedia.org

https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wiktionary.org/wiki/en:%CE%BA%CF%81%CF%85%CF%80%CF%84%CF%8C%CF%82
https://en.wiktionary.org/wiki/en:%CE%B3%CF%81%CE%AC%CF%86%CF%89#Ancient_Greek
https://en.wiktionary.org/wiki/en:-%CE%BB%CE%BF%CE%B3%CE%AF%CE%B1#Greek
https://en.wikipedia.org/wiki/-logy
https://en.wikipedia.org/wiki/Secure_communication
https://en.wikipedia.org/wiki/Adversary_(cryptography)


SOME CRYPTOGRAPHIC GOALS

 Confidentiality

 Content of conversation remains hidden

 Authenticity

 Message is really sent by specific sender

 Integrity

 Message has not been modified

 Privacy:

 Sensitive (user) data remains hidden

 Covertcy

 The fact that a conversation is taking place is hidden

 ….



CONFIDENTIALITY

 Parties exchange messages

 Parties store documents (or strings e.g. passwords)

No unauthorized party can learn anything 
about contents.



AUTHENTICITY

 “Online”: Alice proves legitimacy to Bob in real-time

fashion (interactively)

No unauthorized party can impersonate a user

 “Offline”: Alice generates proof of identity to be

verified offline by Bob

No unauthorized party can forge the proof



INTEGRITY

 Parties send or receive messages

No modification to content of message(s)



HOW CRYPTOGRAPHY WORKS

 Use building blocks (primitives)

 … either by themselves (hashing for integrity)

 … or in larger constructions (protocols, schemes)

 Security must be guaranteed even if mechanism 

(primitive, protocol) is known to adversaries

 Steganography vs. cryptography:

 Steganography: hide secret information in plain sight

 Cryptography: change secret information to 

something else, then send it 



A BRIEF HISTORY

 “Stone age”: secrecy of algorithm

 Substitution and permutation (solvable by hand)

 Caesar cipher, Vigenère cipher, etc.

 “Industrial Age”: automation of cryptology

 Cryptographic machines like Enigma

 Fast, automated permutations (need machines to solve)

 “Contemporary Age”: provable security

 Starting from assumptions (e.g. a one-way function), 

I build a scheme, which is “provably” secure in model



PART II

THE PROVABLE SECURITY METHOD



SECURITY BY TRIAL-AND-ERROR

 Identify goal (e.g. confidentiality in P2P networks)

 Design solution – the strategy:

 Propose protocol

 Search for an attack

 If attack found, fix (go to first step)

 After many iterations or some time, halt

 Output: resulting scheme

 Problems:

 What is “many” iterations/ “some” time?

 Some schemes take time to break: MD5, RC4…



PROVABLE SECURITY

 Identify goal. Define security:

 Syntax of the primitive: e.g. algorithms (KGen, Sign, Vf) 

 Adversary (e.g. can get signatures for arbitrary msgs.)

 Security conditions (e.g. adv. can’t sign fresh message)

 Propose a scheme (instantiate syntax)

 Define/choose security assumptions

 Properties of primitives / number theoretical problems

 Prove security – 2 step algorithm:

 Assume we can break security of scheme (adv. A)

 Then build “Reduction” (adv. B) breaking assumption



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 1: Define your primitive (syntax)

Signature Scheme: algorithms (KGen, Sign, Vf)

* KGen(1𝛾)  outputs (sk, pk)

* Sign(sk,m) outputs S (prob.)

* Vf(pk,m,S) outputs 0 or 1 (det.)

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 2: Define your adversary

Adversaries A can: know public information: 𝛾, pk

get no message/signature pair

get list of message/signature pairs

submit arbitrary message to sign 

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 3: Define the security condition

Adversary A can output fresh (m,S) which verifies, 

with non-negligible probability (as a function of 𝛾)

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 4: Propose a protocol

Instantiate the syntax given in Step 1. 

E.g. give specific algorithms for KGen, Sign, Vf. 

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 5: Choose security assumptions

For each primitive in the protocol, choose 

assumptions

• Security Assumptions (e.g. IND-CCA encryption)

• Number Theoretical Assumptions (e.g. DDH, RSA)

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



THE ESSENCE OF PROVABLE SECURITY

 Core question: what does “secure” mean?

 “Secure encryption” vs. “Secure signature scheme”

 Step 6: Prove security

For each property you defined in steps 1-3:

• Assume there exists an adversary A breaking 

that security property with some probability 𝜀

• Construct reduction B breaking some 

assumption with probability f(𝜀)

 Say a scheme is secure against all known attacks

 … will it be secure against a new, yet unknown 

attack?



HOW REDUCTIONS WORK

 Reasoning:

 If our protocol/primitive is insecure, then the 

assumption is broken

 But the assumption holds (by definition)

 Conclusion: The protocol cannot be insecure

 Caveat:

 Say an assumption is broken (e.g. DDH easy to solve)

 What does that say about our protocol?

 Security assumptions are baseline

We don’t know!



PART III

ASSUMPTIONS



WE NEED COMPUTATIONAL ASSUMPTIONS

 Correctness: if parameters are well generated, 

well-signed signatures always verify.

 Take our signature schemes (KGen, Sign, Vf)

KGen
1𝑠

Signsk

pk

m

𝜎

Vf 0/1



WE NEED COMPUTATIONAL ASSUMPTIONS

 Unforgeability: no adversary can produce 

signature for a fresh message m*

 Take our signature schemes (KGen, Sign, Vf)

KGen
1𝑠

Signsk

pk

m

𝜎

Vf 0/1

But any A can guess 𝑠𝑘 with probability ൗ1 2|𝑠𝑘|



WE NEED COMPUTATIONAL ASSUMPTIONS

 Unforgeability: no adversary can produce 

signature for a fresh message m*

 Take our signature schemes (KGen, Sign, Vf)

KGen
1𝑠

Signsk

pk

m

𝜎

Vf 0/1

And any A can guess valid 𝜎 with probability ൗ1 2|𝜎|



SOME COMPUTATIONAL ASSUMPTIONS

 Of the type: It is “hard” to compute 𝑥 starting from 𝑦.

 How hard? 

 Usually no proof that the assumption holds

 Mostly measured with respect to “best attack”

 Sometimes average-case, sometimes worst-case

 Relation to other assumptions: 

 A 1 “→” A 2:  break A 2 => break A 1

 A 1 “←” A 2: break A 1 => break A 2

 A 1 “” A 2: both conditions hold

stronger

weaker

equivalent



EXAMPLES: DLOG, CDH, DDH

 Background:

 Finite field F, e.g. Z*
p = {1, 2, … , p-1} for prime p

 Multiplication, e.g. modulo p: 2 𝑝 − 2 = 2𝑝 − 4 = 𝑝 − 4

 Element 𝑔 of prime order 𝑞| (𝑝 − 1) : 

𝑔𝑞 = 1 (mod 𝑝) AND  𝑔𝑚 ≠ 1 mod 𝑝 ∀ 𝑚 < 𝑞

 Cyclic group  G = < 𝑔 > = {1, 𝑔, 𝑔2…𝑔𝑞−1}

 DLog problem:

 Pick 𝑥 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋 find 𝑥.

 Assumed hard.



EXAMPLES: DLOG, CDH, DDH

 DLog problem:

 Pick 𝑥 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋 find 𝑥.

 Assumed hard.



EXAMPLES: DLOG, CDH, DDH

 DLog problem:

 Pick 𝑥 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋 find 𝑥.

 Assumed hard.

 CDH problem:

 Pick 𝑥, 𝑦 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 mod 𝑝 ;

𝑌 = 𝑔𝑦 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋, 𝑌 find 𝑔𝑥𝑦.

Just to remind you: 𝒈𝒙𝒚 = 𝑿𝒚 = 𝒀𝒙 ≠ 𝑿𝒀 = 𝒈𝒙+𝒚

 Solve D-LOG → Solve CDH

 Solve CDH → Solve D-LOG



EXAMPLES: DLOG, CDH, DDH

 DLog problem:

 Pick 𝑥 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋 find 𝑥.

 CDH problem:

 Pick 𝑥, 𝑦 ∈𝑅 {1, … , 𝑞}. Compute 𝑋 = 𝑔𝑥 mod 𝑝 ;

𝑌 = 𝑔𝑦 (mod 𝑝).

 Given 𝑝, 𝑞, 𝑔, 𝑋, 𝑌 find 𝑔𝑥𝑦.

 DDH problem:

 Pick 𝑥, 𝑦, 𝑧 ∈𝑅 {1, … , 𝑞}. Compute 𝑋, 𝑌 as above

 Given 𝑝, 𝑞, 𝑔, 𝑋, 𝑌 distinguish 𝑔𝑥𝑦 from 𝑔𝑧.



HOW TO SOLVE THE DLOG PROBLEM

 In finite fields mod 𝑝:
 Brute force (guess 𝑥) – O(𝑞)
 Baby-step-giant-step: memory/computation tradeoff; 

O( 𝑞)

 Pohlig-Hellman: small factors of 𝑞; O(log𝑝 𝑞 (log 𝑞 + 𝑝))

 Pollard-Rho (+PH): O( 𝑝) for biggest factor 𝑝 of 𝑞

 NFS, Pollard Lambda, …

 Index Calculus: exp( ln 𝑞
1

3 ln(ln(𝑞))
2

3)

 Elliptic curves

 Generic: best case is BSGS/Pollard-Rho

 Some progress on Index-Calculus attacks recently



PARAMETER SIZE VS. SECURITY

Date Sym. RSA 

modulus

DLog

Key

DLog

Group

EC

GF(p)

Hash

<2020 100 2048 200 2048 200 200

<2030 128 2048 200 2048 256 256

>2030 128 3072 200 3072 256 256

Date Sym. RSA 

modulus

DLog

Key

DLog

Group

EC

GF(p)

Hash

2015 128 2048 224 2048 224 SHA-224+

2016 128 2048 256 2048 256 SHA-256+

<2021 128 3072 256 3072 256 SHA-256+

ANSSI

BSI



USING ASSUMPTIONS

 Implicitly used for all the primitives you have 

ever heard of

 Take ElGamal encryption:

 Setup: 𝑁-bit prime 𝑞, 𝐿-bit prime 𝑝 with 𝑞 | (𝑝 − 1)

Generator 𝑔 such that Order 𝑔 mod 𝑝 = 𝑞

 Secret key: random 𝑠𝑘 ∈ {1,… , 𝑞 − 1}

 Public key: 𝑝𝑘 = 𝑔𝑠𝑘 (mod 𝑝)

𝒈𝒒 = 𝒌𝒑 + 𝟏 for some 𝒌 and 𝒈𝒎 ≠ 𝒏𝒑 + 𝟏 for any 𝒏

DLog: you can’t compute 𝑠𝑘 from 𝑝𝑘



USING ASSUMPTIONS (2)

 Implicitly used for all the primitives you have 

ever heard of

 Take ElGamal encryption:

 Setup: 𝑁-bit prime 𝑞, 𝐿-bit prime 𝑝 with 𝑞 | (𝑝 − 1)

Generator 𝑔 such that Order 𝑔 mod 𝑝 = 𝑞

 Secret key: random 𝑠𝑘 ∈ {1,… , 𝑞 − 1}

 Public key: 𝑝𝑘 = 𝑔𝑠𝑘 (mod 𝑝)

 Encryption: pick random 𝑟, output: 𝑔𝑟 , 𝑀 ∙ 𝑝𝑘𝑟 mod 𝑝

 Decryption: 
𝑀∙𝑝𝑘𝑟

𝑔𝑟 𝑠𝑘 =
𝑀∙(𝑔𝑠𝑘)𝑟

𝑔𝑟 𝑠𝑘

CDH: can’t compute 𝑔𝑟∙𝑠𝑘 from 𝑔𝑟, 𝑔𝑠𝑘



USING ASSUMPTIONS (3)

 Implicitly used for all the primitives you have 

ever heard of

 Take Diffie-Helman key exchange (2-party):

 Setup: 𝑝, 𝑞, 𝑔 as before

Alice Bob

Pick 𝑎 𝐴 = 𝑔𝑎 Pick 𝑏

𝐵 = 𝑔𝑏

Compute: 𝐾 = 𝐴𝑏Compute: 𝐾 = 𝐵𝑎

DDH: can’t distinguish 𝐾 from random, given 𝐴, 𝐵



PART IV

SECURITY MODELS



IDEAL PROVABLE SECURITY

 Given protocol 𝜋, assumptions 𝐻1, … , 𝐻𝑘

Proof

under 𝑯𝟏, … , 𝑯𝒌

Real world

using 𝜋

Ideal 

world

“Real World” is hard to describe mathematically



PROVABLE SECURITY

 Two-step process:

Real world

using 𝜋
Modelled 

world

using 𝜋



PROVABLE SECURITY

Ideal 

world

Real world

using 𝜋

Proof

under 𝑯𝟏, … ,𝑯𝒌



COMPONENTS OF SECURITY MODELS

 Adversarial à-priori knowledge & computation:

 Who is my adversary? (outsider, malicious party, etc.)

 What does my adversary learn?

 Adversarial interactions (party-party, adversary-

party, adversary-adversary – sometimes) 

 What can my adversary learn 

 How can my adversary attack?

 Adversarial goal (forge signature, find key, 

distinguish Alice from Bob) 

 What does my adversary want to achieve?



GAME-BASED SECURITY

 Participants

 Adversary A plays a game against a challenger C
 Adversary = attacker(s), has all public information

 Challenger = all honest parties, has public 

information and secret information

 Attack 
 Oracles: A makes oracle queries to C to learn 

information

 Test: special query by A to C, to which A responds

sometimes followed by more oracle queries

 Win/Lose: a bit output by C at the end of the game



CANONICAL GAME-BASED SECURITY

A C

Setup

s/pPar
pPar

Learn

ChGen
chg*

resp

Result0 or 1

Learn
(s)

Game Structure

 Setup: generate game 

parameters s/pPar

 Learn: A queries oracles;   

C answers using s

 ChGen: C generates 

challenge chg*

 Result: C learns 

whether A has won or 

lost



EXAMPLE 1: SIGNATURE SCHEMES

 Intuition: a signature scheme (KGen, Sign, Vf) is 

secure if and only if: 

 Formal security definition: UNF-CMA

 A should not be able to forge signatures

𝑠𝑘, 𝑝𝑘 ← KGen 1𝛼

𝑚, 𝜎 ← 𝐴𝑂𝑆𝑖𝑔𝑛 ∗ N
(1𝛼 , 𝑝𝑘)

Set : L = {𝑚𝑖 , 𝜎𝑖}𝑖=1,…,N with 𝜎𝑖 ← 𝑂𝑆𝑖𝑔𝑛(𝑚𝑖)

𝐴 wins iff: Vf 𝑝𝑘,𝑚, 𝜎 = 1 and   𝑚,∗ ∈ L

𝑂𝑆𝑖𝑔𝑛(∗)

On input  𝑚, set

𝜎 ← Sign(𝑠𝑘,𝑚)

Output 𝜎



EXAMPLE 2: PKE

 Intuition: a PK encryption scheme (KGen, Enc, Dec)
is secure if and only if: 

 A should not be able to learn encrypted messages

 Formally defining this (without decryptions):

𝑠𝑘, 𝑝𝑘 ← KGen 1𝛼

𝑚 ←𝑅 𝑀

𝑐 ← Enc 𝑝𝑘,𝑚

𝑚′ ← A 1𝛼 , 𝑝𝑘, 𝑐

𝐴 wins iff: 𝑚 = 𝑚′



EXAMPLE 2: PKE

 Intuition: a PK encryption scheme (KGen, Enc, Dec)
is secure if and only if: 

 A should not be able to learn encrypted messages

 What if A can learn some ciphertext/plaintext tuples?

𝑠𝑘, 𝑝𝑘 ← KGen 1𝛼

ready ← 𝐴𝑂𝐷𝑒𝑐(∗)
𝑁
1𝛼, 𝑝𝑘

𝑚 ←𝑅 𝑀

𝑐 ← Enc 𝑝𝑘,𝑚

𝑚′ ← 𝐴𝑂𝐷𝑒𝑐′(∗)
𝑀
1𝛼 , 𝑝𝑘, 𝑐

𝐴 wins iff: 𝑚 = 𝑚′

𝑂𝐷𝑒𝑐(∗)

On input 𝑐′, output

𝑚 ← Dec(𝑠𝑘, 𝑐′)

𝑂𝐷𝑒𝑐′(∗)

On input 𝑐′ ≠ 𝑐, output

𝑚 ← Dec(𝑠𝑘, 𝑐′)
Else, output ℶ



EXAMPLE 2: PKE

 Intuition: a PK encryption scheme (KGen, Enc, Dec)
is secure if and only if: 

 A should not be able to learn encrypted messages

What if A can learn a single bit of the message?

1 bit can make a difference in a small message space!

 A should not be able to learn even 1 bit of an encrypted 

message



EXAMPLE 2: PKE

 Intuition: a PK encryption scheme (KGen, Enc, Dec)
is secure if and only if: 

 A must not learn even 1 bit of an encrypted message

 Formal definition: IND-CCA

𝑠𝑘, 𝑝𝑘 ← KGen 1𝛼

(𝑚1, 𝑚2) ← 𝐴𝑂𝐷𝑒𝑐(∗)
𝑁
1𝛼 , 𝑝𝑘

𝑏 ←𝑅 {0,1}

𝑐 ← Enc 𝑝𝑘,𝑚𝑏

𝑑 ← 𝐴𝑂𝐷𝑒𝑐′(∗)
𝑀
1𝛼, 𝑝𝑘, 𝑐

𝐴 wins iff: 𝑏 = 𝑑

𝑂𝐷𝑒𝑐(∗)

On input 𝑐′, output

𝑚 ← Dec(𝑠𝑘, 𝑐′)

𝑂𝐷𝑒𝑐′(∗)

On input 𝑐′ ≠ 𝑐, output

𝑚 ← Dec(𝑠𝑘, 𝑐′)
Else, output ℶ



MEASURING ADVERSARIAL SUCCESS

 Winning a game; winning condition:

 Depends on relation 𝑅 on (∗,< game >), with < game > =

full game input (of honest parties and A)

 Finally, A outputs 𝑥, wins if (𝑥, < game >) ∈ 𝑅

 Success probability:
 What is the probability that A “wins” the game?

 What is the probability measured over? (e.g. randomness 

in < game >, sometimes probability space for keys, etc.)

 Advantage of Adversary:
 How much better is A than a trivial adversary?



TRIVIAL ADVERSARIES

 Example 1: Signature unforgeability
 A has to output a valid signature for message 𝑚

 Trivial attacks: (1) guess signature (probability 2−|𝜎|)

(2) guess secret key (probability 2−|𝑠𝑘|)

(3) re-use already-seen 𝜎

 Goal: A outputs valid signature for fresh message 𝑚

 Example 2: Distinguish real from random
 A has to output a single bit: real (0) or random (1)

 Trivial attacks: (1) guess the bit (probability Τ1 2)

(2) guess secret key (probability 2−|𝑠𝑘|)



ADVERSARIAL ADVANTAGE

 Forgery type games: 
 A has to output a string of a “longer” size 

 Best trivial attacks: guess the string or guess the key

 Advantage: 

Adv 𝐴 = Prob[𝐴 wins the game]

 Distinguishability-type games: 
 A must distinguish between 2 things: left/right, 

real/random 

 Best trivial attacks: guess the bit (probability Τ1 2)

 Advantage (different ways of writing it): 

Adv 𝐴 = Prob 𝐴 wins the game − Τ1 2

Adv 𝐴 = 2 | Prob 𝐴 wins the game − Τ1 2 |



DEFINING SECURITY

 Exact security definitions: 

 Input: number of significant queries of A, execution 

time, advantage of A
 Example definition: 

A signature scheme (KGen, Sign, Vf) is 𝑁, 𝑡, 𝜀 -

unforgeable under chosen message attacks (UNF-CMA) if 
for any adversary A, running in time 𝑡, making at most 𝑁

queries to the Signing oracle, it holds that:

Adv 𝐴 := Prob 𝐴 wins the game ≤ 𝜀

 If a scheme is (𝑁, 𝑡, 1)-UNF-CMA, then the scheme is 

insecure!



DEFINING SECURITY

 Asymptotic security: 

 Consider behaviour of 𝜀 as a function of the size of the 

security parameter 1𝛼: 

A signature scheme (KGen, Sign, Vf) is 𝑁, 𝑡, 𝜀 -

unforgeable under chosen message attacks (UNF-CMA) if 
for any adversary A, running in time 𝑡, making at most 𝑁

queries to the Signing oracle, it holds that:

Adv 𝐴 := Prob 𝐴 wins the game ≤ 𝜀

The signature is 𝑁, 𝑡 -unforgeable under chosen 
message attacks if for any adversary A as above, it holds:

Adv 𝐴 ≤ negl(1𝛼)



SIMULATION-BASED DEFINITIONS

 Game-based definitions

 Well understood and studied

 Can capture attacks up to “one bit of information”

 What else do we need?

 Zero-Knowledge: “nothing leaks about…”

 Real world: “real” parties, running protocol in the 
pre-sence of a “local” adversary

 Ideal world: “dummy” parties, simulator that 
formalizes the most leakage allowed from the 
protocol 

 “Global” adversary: distinguisher real/ideal world – if 
simulator is successful, then real world leaks as 
much as ideal world



SECURITY MODELS – CONCLUSIONS

 Requirements:

 Realistic models: capture “reality” well, making 

proofs meaningful

 Precise definitions: allow quantification/classification 

of attacks, performance comparisons for schemes, 

generic protocol-construction statements

 Exact models: require subtlety and finesse in 

definitions, in order to formalize slight relaxations of 

standard definitions

 Provable security is an art, balancing strong security 

requirements and security from minimal assumptions



PART V

PROOFS OF SECURITY



GAME HOPPING

 Start from a given security game 𝐺0

 Modify 𝐺0 a bit (limiting A) to get 𝐺1

 Show that for protocol 𝜋, games 𝐺0 and 𝐺1 are equivalent

(under assumption A), up to negligible factor 𝜀1:

𝑮𝟎 ≅𝜺𝟏 𝑮𝟏: Prob 𝐴 wins 𝐺0 ≤ Prob 𝐴 wins 𝐺1 + 𝜀1

 Hop through 𝐺2, 𝐺3, … , 𝐺𝑛 (such that 𝐺𝑖−1 ≅𝜀𝑖 𝐺𝑖 for all 𝑖)   

 For last game 𝐺𝑛 find Prob 𝐴 wins 𝐺𝑛 ; then:

Prob 𝐴 wins 𝐺0 ≤෍

𝑖=1

𝑛

𝜀𝑖 + Prob[𝐴 wins 𝐺𝑛]



PROVING 𝐺𝑖−1 ≅𝜀𝑖 𝐺𝑖

 Method 1: Reduce game indistinguishability to 
assumption or hard problem

 If there exists a distinguisher A between 𝐺𝑖−1 and 𝐺𝑖
winning with probability Τ1 2+ 𝛿 then there exists an 
adversary B against assumption 𝐻1 winning with 
probability 𝛿′ = 𝑓(𝛿)

 So, Prob 𝐴 wins 𝐺0 − Prob 𝐴 wins 𝐺1 ≤ 𝛿 + 𝛿′ =: 𝜀1

 Method 2: Reduce “difference” between games to 

assumption or hard problem 

 By construction, A can win 𝐺0 more easily than 𝐺1 (since A
is more limited in 𝐺1)

 If there exists an adversary B that can “take advantage of” 

the extra ability it has in 𝐺0 to win w.p. Prob 𝐴 wins 𝐺1 + 𝛿, 

then there exists B against 𝐻1 winning w.p. 𝛿′… (as above)



GAME EQUIVALENCE & REDUCTIONS

• Reduction: algorithm R taking adversary A against a 

game, outputting adversary B against another game/hard 

problem RA → B

• Intuition: if there exists an adversary A against game 𝐺, 

this same adversary can be used by R to obtain B against 

𝐺′

• In order to fully use A, B needs to simulate C :

• A queries C in game 𝐺: B must answer query

• A sends challenge input to C : B must send challenge

• A answers challenge: B uses response in game 𝐺′

• A interacts with challenger C in 𝐺, B interacts with C’ in 𝐺′



PART VI

AN EXAMPLE



SECURE SYMMETRIC-KEY

AUTHENTICATION

 Alice wants to authenticate to Bob, with whom 

she shares a secret key

Alic

e

Bob

𝐾

Choose
chg ← PRG(seed)

seed

chg

rsp ← PRF𝐾(chg)

rsp Verify:
rsp = PRF𝐾(chg)



SECURITY OF AUTHENTICATION

Alic

e

Bob

𝐾

 Nobody but Alice must authenticate to Bob

 Who is my adversary? 

 A man-in-the-middle

Authenticatio

n

 What can they do?

 Intercept messages, send messages (to Alice or Bob), eavesdrop

 What is they goal of A?

 Make Bob accept A as being Alice



TRIVIAL ATTACKS: RELAY

Alic

e

Bob 𝐾𝐾

seed
chg

chg

rsp

rsp

 Relay attacks bypass any kind of cryptography: encryp-

tion, hashing, signatures, etc.

 Countermeasure: distance bounding (we’ll see it later)



SECURE AUTHENTICATION: DEFINITION

 Session ID: tuple < chg, rsp > used between partners

 Oracles: 

 NewSession(∗): input either 𝑃1 = Alice or 𝑃2 = Bob

outputs session “handle” 𝜋

 Send(∗,∗): input handle 𝜋 and message 𝑚 ∈ 𝑀 ∪ {Prompt}

transmits 𝑚 to partner in 𝜋, outputs 𝑚′

 Result(∗): input a handle 𝜋 with partner 𝑃2

outputs 1 if 𝑃2 accepted authentication in 𝜋, 

0 if 𝑃2 rejected, and ℶ otherwise



SECURE AUTHENTICATION: GAME

Game 𝐈𝐦𝐩𝐒𝐞𝐜:

𝑘 ←𝑅 KSpace(1𝛼)

seed ←𝑅 SSpace (1𝛼)

done ← 𝐴NewSession ∗ ,Send ∗,∗ ,Result ∗ (1∝)

A wins iff ∃ 𝜋 output by NewSession(𝑃2) such that:

• Result 𝜋 = 1;

• There exists no 𝜋′ output by NewSession 𝑃1 such
that sid 𝜋 = sid(𝜋′)

 Protocol is 𝑁1, 𝑁2, 𝜀 -impersonation secure iff. no adver-
sary A using 𝑁𝑖 sessions with 𝑃𝑖 wins w.p. ≥ 𝜀.

Adv 𝐴 ≔ Prob[𝐴 wins]



PRGS AND PRFS

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

rsp ← PRF𝐾(chg)
rsp Verify:

rsp = PRF𝐾(chg)

 Pseudorandomness of PRG:

key ←𝑅 Kspace

𝑑 ← 𝐴Eval𝑏()

𝐴 wins iff. 𝑑 = 𝑏

Eval𝑏():
if 𝑏 = 0, return Rand()

else, return PRG(key)

𝐾



PRGS AND PRFS

 Pseudorandomness of PRF:

key ←𝑅 Kspace

𝑑 ← 𝐴Eval𝑏()

𝐴 wins iff. 𝑑 = 𝑏

Eval𝑏():
choose 𝑥 ←𝑅 X
if 𝑏 = 0, return Rand(x)
else, return PRFkey(𝑥)

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

rsp ← PRF𝐾(chg)
rsp Verify:

rsp = PRF𝐾(chg)

𝐾



PROVING SECURITY

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

rsp ← PRF𝐾(chg)
rsp Verify:

rsp = PRF𝐾(chg)

𝐾

 Intuition:

 If the PRG is good, then each chg is (almost) unique (up to 

collisions)

 If the PRF is good, then each rsp looks random to adversary

 Unless adversary relays, no chance to get right answer



PROVING SECURITY

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

𝐾

 Proof, step 1:

 Game 𝐺0: Game ImpSec

 Game 𝐺1: Replace chg output by 𝑃2 by random

 Equivalence: 𝐺0 ≅ 𝐺1: if there exists 𝜀-distinguisher A
between 𝐺0 and 𝐺1, then there exists B against PRG winning 

w.p. 𝜀

 Basically the intuition is that if A can distinguish between the two 

games, he can distinguish real (PRG) from truly random challenges



PROVING SECURITY

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

𝐾

 Proof, equivalence 𝐺0 ≅ 𝐺1: 

 ∃ 𝜀-distinguisher A for 𝐺0 / 𝐺1 ֜ ∃ B winning PRG w.p. 𝜀

 Simulation: B chooses key 𝐾 ←𝑅 K𝑆pace and simulate any requests to 

Send(𝜋, Prompt) by Eval𝑏() queries in PRG game

 Finally A guesses either game 𝐺0 (B outputs 1) or 𝐺1 (B outputs 0)

Game PRG

seed ←𝑅 Kspace

𝑑 ← 𝐵Eval𝑏()

𝐵 wins iff. 𝑑 = 𝑏

Eval𝑏():
if 𝑏 = 0, return Rand()

else, return PRG(key)



PROVING SECURITY

Alic

e

Bob𝐾

Choose
chg ← PRG(seed)

seed

chg

𝐾

 Proof, step 2:

 Game 𝐺0: Game ImpSec

 Game 𝐺1: Replace chg output by 𝑃2 by random

 Game 𝐺2: Abort if collision in chg

 Equivalence: 𝐺1 ≅ 𝐺2: collisions in random strings occur in 2 

different sessions w.p. ( Τ1 2)
|chg| . But we have a total of 𝑁2

sessions, so the total probability of a collision is:

𝑁2
2

2−|chg|



PROVING SECURITY

Alic

e

Bob𝐾 seed
chg

𝐾

 Proof, step 3:

 Game 𝐺0: Game ImpSec

 Game 𝐺1: Replace chg output by 𝑃2 by random

 Game 𝐺2: Abort if collision in chg

 Game 𝐺3: replace honest responses by consistent, truly 

random strings

 Equivalence: 𝐺2 ≅ 𝐺3: Similar to reduction to PRG, only this 

time it is to the pseudorandomness of the PRF.

rsp ← PRF𝐾(chg) rsp



PROVING SECURITY

Alic

e

Bob𝐾 seed
chg

𝐾

 Proof, step 4:

 Game 𝐺0: Game ImpSec

 Game 𝐺1: Replace chg output by 𝑃2 by random

 Game 𝐺2: Abort if collision in chg

 Game 𝐺3: replace honest responses by consistent, truly 

random strings

 At this point, the best the adversary can do is to guess a 

correct chg/rsp, i.e. Prob 𝐴 wins 𝐺3 = 𝑁1 ∙ 2
− chg + 𝑁2 ∙ 2

−|rsp|

rsp ← PRF𝐾(chg) rsp



PUTTING IT TOGETHER

ImpSec 𝐺1

𝐺2

𝐺3

Prob 𝐴 wins ImpSec ≤ Prob 𝐴 wins 𝐺1 + Adv[𝐵 against PRG]

Prob 𝐴 wins 𝐺1 ≤ Prob 𝐴 wins 𝐺2 +
𝑁2
2

2−|chg|

𝜀PRG
𝑁2
2

2−|chg|

Prob 𝐴 wins 𝐺2 ≤ Prob 𝐴 wins 𝐺3 + Adv[𝐵 against PRF]

𝜀PRF

Prob 𝐴 wins 𝐺3 = 𝑁1 ∙ 2
− chg + 𝑁2 ∙ 2

−|rsp|



SECURITY STATEMENT

 For every 𝑵𝟏, 𝑵𝟐, 𝜺 - impersonation security
adver-sary A against the protocol, there exist:

 An 𝜺𝐏𝐑𝐆-distinguisher against PRG

 An 𝜺𝐏𝐑𝐅-distinguisher against PRF

such that:

𝜺 ≤ 𝜺𝐏𝐑𝐆 + 𝜺𝐏𝐑𝐅 +
𝑵𝟐
𝟐

𝟐− 𝒄𝒉𝒈 + 𝑵𝟏 ∙ 𝟐
− 𝒄𝒉𝒈 + 𝑵𝟐 ∙ 𝟐

−|𝒓𝒔𝒑|



PART VII

CONCLUSIONS



PROVABLE SECURITY

 Powerful tool 

 We can prove that a protocol is secure by design 

 Captures generic attacks within a security model

 Can compare different schemes of same “type”

 3 types of schemes:

 Provably Secure

 Attackable (found an attack)

 We don’t know (unprovable, but not attackable)


