

INTRODUCTION TO PROVABLE SECURITY

Models, Adversaries, Reductions

CRYPTOGRAPHY / CRYPTOLOGY

- "from <u>Greek</u> κρυπτός kryptós, "hidden, secret"; and <u>γράφειν</u> graphein, "writing", or <u>-λογία</u> <u>-logia</u>, "study", respectively"
- "is the practice and study of techniques for <u>secure</u> <u>communication</u> in the presence of third parties (called <u>adversaries</u>)."

Source : www.wikipedia.org

Some cryptographic goals

- Confidentiality
 - Content of conversation remains hidden
- Authenticity
 - Message is really sent by specific sender
- Integrity
 - Message has not been modified
- Privacy:
 - Sensitive (user) data remains hidden
- Covertcy
 - The fact that a conversation is taking place is hidden

CONFIDENTIALITY

- > Parties exchange messages
- > Parties store documents (or strings e.g. passwords)

No unauthorized party can learn anything about contents.

AUTHENTICITY

"Online": Alice proves legitimacy to Bob in real-time fashion (interactively)

No unauthorized party can impersonate a user

"Offline": Alice generates proof of identity to be verified offline by Bob

No unauthorized party can forge the proof

INTEGRITY

> Parties send or receive messages

No modification to content of message(s)

HOW CRYPTOGRAPHY WORKS

> Use building blocks (primitives)

- ... either by themselves (hashing for integrity)
- ... or in larger constructions (protocols, schemes)
- Security must be guaranteed even if mechanism (primitive, protocol) is known to adversaries
- Steganography vs. cryptography:
 - Steganography: hide secret information in plain sight
 - Cryptography: change secret information to something else, then send it

A BRIEF HISTORY

Stone age": secrecy of algorithm

- Substitution and permutation (solvable by hand)
 Caesar cipher, Vigenère cipher, etc.
- "Industrial Age": automation of cryptology
 - Cryptographic machines like Enigma
 - Fast, automated permutations (need machines to solve)
 - "Contemporary Age": provable security
 - Starting from assumptions (e.g. a one-way function),
 I build a scheme, which is "provably" secure in model

PART II THE PROVABLE SECURITY METHOD

SECURITY BY TRIAL-AND-ERROR

- > Identify goal (e.g. confidentiality in P2P networks)
- > Design solution the strategy:
 - Propose protocol
 - Search for an attack
 - If attack found, fix (go to first step)
 - After many iterations or some time, halt
- > Output: resulting scheme
- > Problems:
 - What is "many" iterations/ "some" time?
 - Some schemes take time to break: MD5, RC4...

PROVABLE SECURITY

- > Identify goal. Define security:
 - Syntax of the primitive: e.g. algorithms (KGen, Sign, Vf)
 - Adversary (e.g. can get signatures for arbitrary msgs.)
 - Security conditions (e.g. adv. can't sign fresh message)
- > Propose a scheme (instantiate syntax)
- > Define/choose security assumptions
 - Properties of primitives / number theoretical problems
- > Prove security -2 step algorithm:
 - Assume we can break security of scheme (adv. A)
 - Then build "Reduction" (adv. B) breaking assumption

- Core question: what does "secure" mean?
 - "Secure encryption" vs. "Secure signature scheme"
- > Say a scheme is secure against all known attacks
 - ... will it be secure against a new, yet unknown attack?
- Step 1: Define your primitive (syntax)

Signature Scheme: algorithms (KGen, Sign, Vf) * KGen (1^{γ}) outputs (sk, pk) * Sign(sk,m) outputs S (prob.) * Vf(pk,m,S) outputs 0 or 1 (det.)

- > Core question: what does "secure" mean?
 - "Secure encryption" vs. "Secure signature scheme"
- > Say a scheme is secure against all known attacks
 - ... will it be secure against a new, yet unknown attack?
- Step 2: Define your adversary

Adversaries *A* can: know public information: γ, pk get no message/signature pair get list of message/signature pairs submit arbitrary message to sign

- > Core question: what does "secure" mean?
 - "Secure encryption" vs. "Secure signature scheme"
- > Say a scheme is secure against all known attacks
 - ... will it be secure against a new, yet unknown attack?
- Step 3: Define the security condition

Adversary \mathcal{A} can output fresh (m,S) which verifies, with non-negligible probability (as a function of γ)

- > Core question: what does "secure" mean?
 - "Secure encryption" vs. "Secure signature scheme"
- > Say a scheme is secure against all known attacks
 - ... will it be secure against a new, yet unknown attack?
- Step 4: Propose a protocol

Instantiate the syntax given in Step 1. E.g. give specific algorithms for KGen, Sign, Vf.

- > Core question: what does "secure" mean?
 - "Secure encryption" vs. "Secure signature scheme"
- > Say a scheme is secure against all known attacks
 - ... will it be secure against a new, yet unknown attack?
- > Step 5: Choose security assumptions

For each primitive in the protocol, choose assumptions

- Security Assumptions (e.g. IND-CCA encryption)
- Number Theoretical Assumptions (e.g. DDH, RSA)

- > Core question: what does "secure" mean?
 - "Secure encryption" vs. "Secure signature scheme"
- > Say a scheme is secure against all known attacks
 - ... will it be secure against a new, yet unknown attack?
- Step 6: Prove security

For each property you defined in steps 1-3:

- Assume there exists an adversary \mathcal{A} breaking that security property with some probability ε
- Construct reduction $\boldsymbol{\mathcal{B}}$ breaking some assumption with probability $f(\boldsymbol{\varepsilon})$

HOW REDUCTIONS WORK

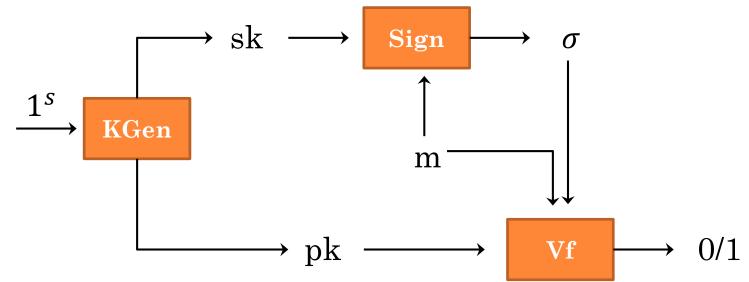
- > Security assumptions are baseline
- > Reasoning:
 - If our protocol/primitive is insecure, then the assumption is broken
 - But the assumption holds (by definition)
- Conclusion: The protocol cannot be insecure
- > Caveat:
 - Say an assumption is broken (e.g. DDH easy to solve)
 - What does that say about our protocol?

We don't know!

PART III ASSUMPTIONS

WE NEED COMPUTATIONAL ASSUMPTIONS

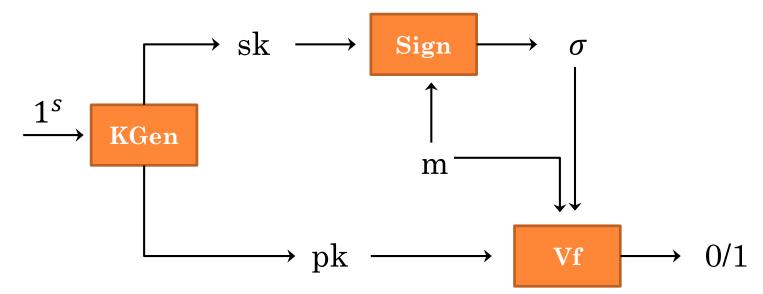
> Take our signature schemes (KGen, Sign, Vf)



Correctness: if parameters are well generated, well-signed signatures always verify.

WE NEED COMPUTATIONAL ASSUMPTIONS

> Take our signature schemes (KGen, Sign, Vf)

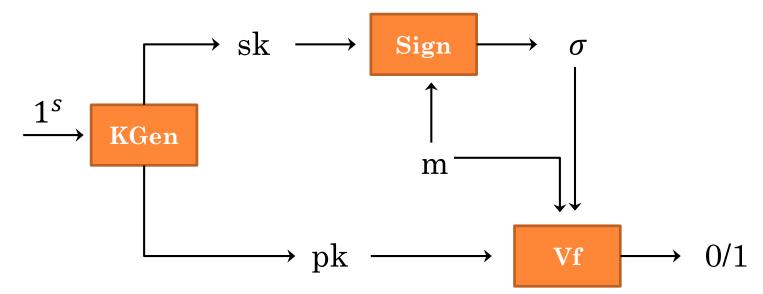


> Unforgeability: no adversary can produce signature for a fresh message m*

But any \mathcal{A} can guess sk with probability $\frac{1}{2|sk|}$

WE NEED COMPUTATIONAL ASSUMPTIONS

> Take our signature schemes (KGen, Sign, Vf)



> Unforgeability: no adversary can produce signature for a fresh message m*

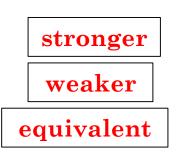
And any \mathcal{A} can guess valid σ with probability $\frac{1}{2|\sigma|}$

Some Computational Assumptions

- > Of the type: It is "hard" to compute *x* starting from *y*.
- > How hard?
 - Usually no proof that the assumption holds
 - Mostly measured with respect to "best attack"
 - Sometimes average-case, sometimes worst-case

> Relation to other assumptions:

- A 1 " \rightarrow " A 2: break A 2 => break A 1
- A 1 "←" A 2: break A 1 => break A 2
- A 1 "⇔" A 2: both conditions hold



Background:

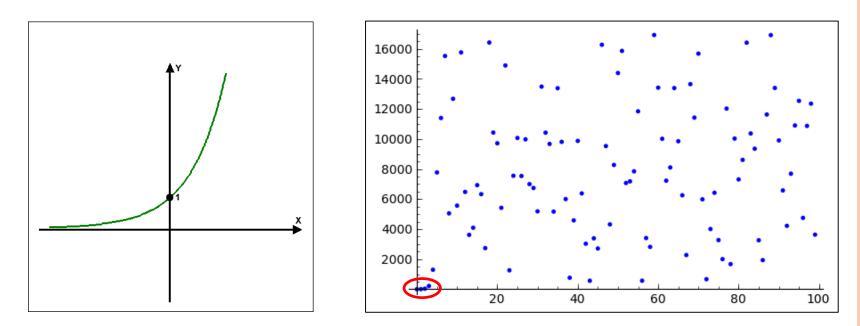
- Finite field F, e.g. $\mathbb{Z}_{p}^{*} = \{1, 2, ..., p-1\}$ for prime p
- Multiplication, e.g. modulo p: 2(p-2) = 2p 4 = p 4
- Element g of prime order $q \mid (p-1)$:

 $g^q = 1 \pmod{p} \text{ AND } g^m \neq 1 \pmod{p} \quad \forall m < q$

• Cyclic group $G = \langle g \rangle = \{1, g, g^2 \dots g^{q-1}\}$

> DLog problem:

- Pick $x \in_R \{1, \dots, q\}$. Compute $X = g^x \pmod{p}$.
- Given (p, q, g, X) find x.
- Assumed hard.



> DLog problem:

- Pick $x \in_R \{1, \dots, q\}$. Compute $X = g^x \pmod{p}$.
- Given (p, q, g, X) find x.
- Assumed hard.

> DLog problem:

- Pick $x \in_R \{1, \dots, q\}$. Compute $X = g^x \pmod{p}$.
- Given (p, q, g, X) find x.
- Assumed hard.
- > CDH problem:
 - Pick $x, y \in_R \{1, \dots, q\}$. Compute $X = g^x \pmod{p}$; $Y = g^y \pmod{p}$.
 - Given (p, q, g, X, Y) find g^{xy} .

Just to remind you: $g^{xy} = X^y = Y^x \neq XY = g^{x+y}$

≻ Solve D-LOG → Solve CDH
≻ Solve CDH → Solve D-LOG

> DLog problem:

- Pick $x \in_R \{1, \dots, q\}$. Compute $X = g^x \pmod{p}$.
- Given (p, q, g, X) find x.

> CDH problem:

- Pick $x, y \in_R \{1, \dots, q\}$. Compute $X = g^x \pmod{p}$; $Y = g^y \pmod{p}$.
- Given (p, q, g, X, Y) find g^{xy} .

> DDH problem:

- Pick $x, y, z \in_R \{1, \dots, q\}$. Compute X, Y as above
- Given (p,q,g,X,Y) distinguish g^{xy} from g^z .

How to solve the DLog problem

> In finite fields mod *p*:

- Brute force (guess x) $\boldsymbol{\mathcal{C}}(q)$
- Baby-step-giant-step: memory/computation tradeoff; $O(\sqrt{q})$
- Pohlig-Hellman: small factors of q; $O(\log_p q (\log q + \sqrt{p}))$
- Pollard-Rho (+PH): $O(\sqrt{p})$ for biggest factor p of q
- NFS, Pollard Lambda, ...
- Index Calculus: $\exp((\ln q)^{\frac{1}{3}}(\ln(\ln(q)))^{\frac{2}{3}})$

Elliptic curves

- Generic: best case is BSGS/Pollard-Rho
- Some progress on Index-Calculus attacks recently

PARAMETER SIZE VS. SECURITY

ANSSI										
Date	Sym.	RSA modulus	DLog Key	DLog Group	EC GF(p)	Hash				
<2020	100	2048	200	2048	200	200				
<2030	128	2048	200	2048	256	256				
>2030	128	3072	200	3072	256	256				

BSI						
Date	Sym.	RSA modulus	DLog Key	DLog Group	EC GF(p)	Hash
2015	128	2048	224	2048	224	SHA-224+
2016	128	2048	256	2048	256	SHA-256+
<2021	128	3072	256	3072	256	SHA-256+

USING ASSUMPTIONS

- Implicitly used for all the primitives you have ever heard of
- > Take ElGamal encryption:
 - Setup: *N*-bit prime *q*, *L*-bit prime *p* with *q* | (*p* − 1) Generator *g* such that Order(*g* mod *p*) = *q*

 $g^q = kp + 1$ for some k and $g^m \neq np + 1$ for any n

- Secret key: random $sk \in \{1, \dots, q-1\}$
- Public key: $pk = g^{sk} \pmod{p}$

DLog: you can't compute *sk* from *pk*

USING ASSUMPTIONS (2)

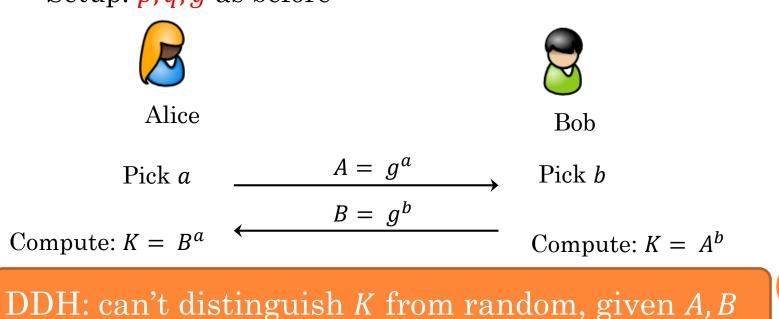
- Implicitly used for all the primitives you have ever heard of
- > Take ElGamal encryption:
 - Setup: *N*-bit prime q, *L*-bit prime p with $q \mid (p-1)$ Generator g such that $Order(g \mod p) = q$
 - Secret key: random $sk \in \{1, \dots, q-1\}$
 - Public key: $pk = g^{sk} \pmod{p}$
 - Encryption: pick random r, output: $(g^r, M \cdot pk^r) \mod p$

• Decryption:
$$\frac{M \cdot pk^r}{(g^r)^{sk}} = \frac{M \cdot (g^{sk})^r}{(g^r)^{sk}}$$

CDH: can't compute $g^{r \cdot sk}$ from g^r , g^{sk}

USING ASSUMPTIONS (3)

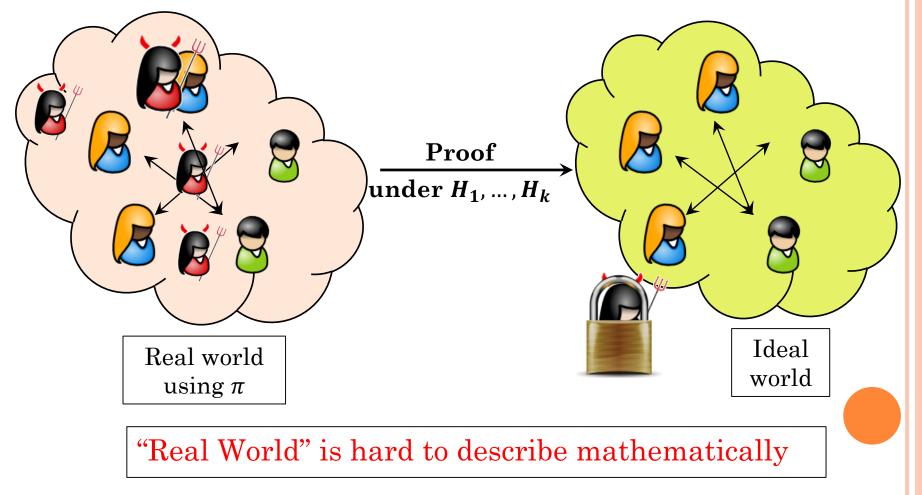
- Implicitly used for all the primitives you have ever heard of
- > Take Diffie-Helman key exchange (2-party):
 - Setup: *p*,*q*,*g* as before



PART IV SECURITY MODELS

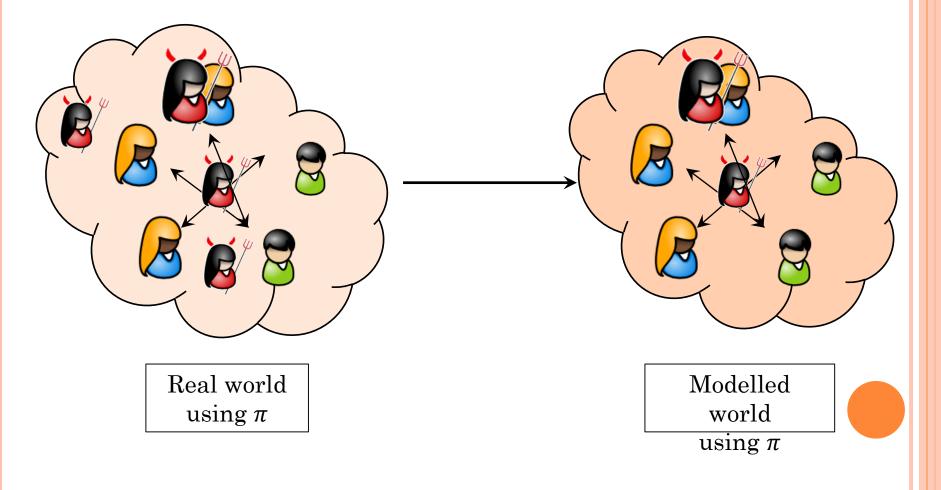
IDEAL PROVABLE SECURITY

> Given protocol π , assumptions H_1, \ldots, H_k

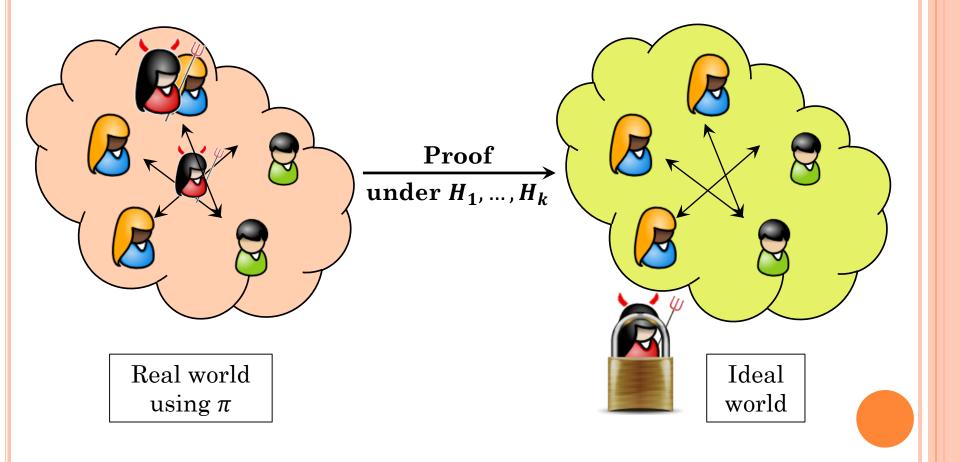


PROVABLE SECURITY

> Two-step process:



PROVABLE SECURITY



COMPONENTS OF SECURITY MODELS

- > Adversarial à-priori knowledge & computation:
 - Who is my adversary? (outsider, malicious party, etc.)
 - What does my adversary learn?
- > Adversarial interactions (party-party, adversaryparty, adversary-adversary – sometimes)
 - What can my adversary learn
 - How can my adversary attack?
- > Adversarial goal (forge signature, find key, distinguish Alice from Bob)
 - What does my adversary want to achieve?

GAME-BASED SECURITY

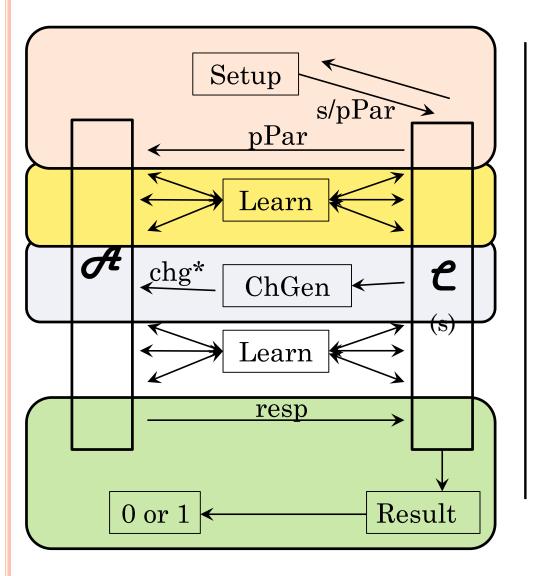
> Participants

- Adversary *A* plays a game against a challenger *C*
- Adversary = attacker(s), has all public information
- Challenger = all honest parties, has public information and secret information

> Attack

- Oracles: *A* makes oracle queries to *C* to learn information
- Test: special query by *A* to *C*, to which *A* responds sometimes followed by more oracle queries
- Win/Lose: a bit output by *C* at the end of the game

CANONICAL GAME-BASED SECURITY



Game Structure

- Setup: generate game parameters s/pPar
- Learn: *A* queries oracles;
 C answers using s
- ChGen: *C*generates challenge chg*
- Result: *C* learns whether *A* has won or lost

EXAMPLE 1: SIGNATURE SCHEMES

- Intuition: a signature scheme (KGen, Sign, Vf) is secure if and only if:
 - *A* should not be able to forge signatures
- Formal security definition: UNF-CMA

 $(sk, pk) \leftarrow \text{KGen}(1^{\alpha})$ $(m, \sigma) \leftarrow A^{OSign(*)^{N}}(1^{\alpha}, pk)$ Set : L = $\{m_i, \sigma_i\}_{i=1,...,N}$ with $\sigma_i \leftarrow OSign(m_i)$ A wins iff: Vf $(pk, m, \sigma) = 1$ and $\{m, *\} \neq L$

OSign(*)

On input m, set $\sigma \leftarrow \text{Sign}(sk, m)$

Output σ

- Intuition: a PK encryption scheme (KGen, Enc, Dec) is secure if and only if:
 - *A* should not be able to learn encrypted messages
- Formally defining this (without decryptions):

$$(sk, pk) \leftarrow \text{KGen}(1^{\alpha})$$

 $m \leftarrow_R M$
 $c \leftarrow \text{Enc}(pk, m)$
 $m' \leftarrow A(1^{\alpha}, pk, c)$
 $A \text{ wins iff: } m = m'$

- Intuition: a PK encryption scheme (KGen, Enc, Dec) is secure if and only if:
 - *A* should not be able to learn encrypted messages
 - > What if **A** can learn some ciphertext/plaintext tuples?

$$(sk, pk) \leftarrow \text{KGen}(1^{\alpha})$$

 $\text{ready} \leftarrow A^{ODec(*)^{N}}(1^{\alpha}, pk)$
 $m \leftarrow_{R} M$
 $c \leftarrow \text{Enc}(pk, m)$
 $m' \leftarrow A^{ODec'(*)^{M}}(1^{\alpha}, pk, c)$
 $A \text{ wins iff: } m = m'$

ODec(*)

On input c', output $m \leftarrow \text{Dec}(sk, c')$

ODec'(*)

On input $c' \neq c$, output $m \leftarrow \text{Dec}(sk, c')$ Else, output \beth

- Intuition: a PK encryption scheme (KGen, Enc, Dec) is secure if and only if:
 - *A* should not be able to learn encrypted messages

What if \mathcal{A} can learn a single bit of the message?

1 bit can make a difference in a small message space!

• *A* should not be able to learn even 1 bit of an encrypted message

- Intuition: a PK encryption scheme (KGen, Enc, Dec) is secure if and only if:
 - *A* must not learn even 1 bit of an encrypted message
- Formal definition: IND-CCA

$$(sk, pk) \leftarrow \text{KGen}(1^{\alpha})$$
$$(m_1, m_2) \leftarrow A^{ODec(*)^N}(1^{\alpha}, pk)$$
$$b \leftarrow_R \{0, 1\}$$
$$c \leftarrow \text{Enc}(pk, m_b)$$
$$d \leftarrow A^{ODec'(*)^M}(1^{\alpha}, pk, c)$$
$$A \text{ wins iff: } b = d$$

0Dec(*)

On input c', output $m \leftarrow \text{Dec}(sk, c')$

ODec'(*)

On input $c' \neq c$, output $m \leftarrow \text{Dec}(sk, c')$ Else, output \beth

MEASURING ADVERSARIAL SUCCESS

> Winning a game; winning condition:

- Depends on relation R on (*, < game >), with < game > = full game input (of honest parties and A)
- Finally, \mathcal{A} outputs x, wins if $(x, < \text{game} >) \in R$
- > Success probability:
 - What is the probability that *A* "wins" the game?
 - What is the probability measured over? (e.g. randomness in < game >, sometimes probability space for keys, etc.)
- > Advantage of Adversary:
 - How much better is *A* than a trivial adversary?

TRIVIAL ADVERSARIES

- Example 1: Signature unforgeability
 - \mathcal{A} has to output a valid signature for message m
 - Trivial attacks: (1) guess signature (probability $2^{-|\sigma|}$)

(2) guess secret key (probability $2^{-|sk|}$)

(3) re-use already-seen σ

- Goal: *A* outputs valid signature for <u>fresh</u> message *m*
- Example 2: Distinguish real from random
 - A has to output a single bit: real (0) or random (1)
 - Trivial attacks: (1) guess the bit (probability 1/2)

(2) guess secret key (probability $2^{-|sk|}$)

ADVERSARIAL ADVANTAGE

Forgery type games:

- A has to output a string of a "longer" size
- Best trivial attacks: guess the string or guess the key
- Advantage:

Adv[A] = Prob[A wins the game]

- > Distinguishability-type games:
 - A must distinguish between 2 things: left/right, real/random
 - Best trivial attacks: guess the bit (probability $1/_2$)
 - Advantage (different ways of writing it):

Adv[A] = Prob[A wins the game] $-\frac{1}{2}$ Adv[A] = 2 | Prob[A wins the game] $-\frac{1}{2}$ |

DEFINING SECURITY

Exact security definitions:

- Input: number of significant queries of *A*, execution time, advantage of *A*
- Example definition:

A signature scheme (KGen, Sign, Vf) is (N, t, ε) unforgeable under chosen message attacks (UNF-CMA) if for any adversary \mathcal{A} , running in time t, making at most Nqueries to the Signing oracle, it holds that:

Adv[A]: = Prob[A wins the game] $\leq \varepsilon$

• If a scheme is (*N*, *t*, 1)-UNF-CMA, then the scheme is insecure!

DEFINING SECURITY

- > Asymptotic security:
 - Consider behaviour of ε as a function of the size of the security parameter 1^α:

A signature scheme (KGen, Sign, Vf) is (N, t, ε) unforgeable under chosen message attacks (UNF-CMA) if for any adversary \mathcal{A} , running in time t, making at most Nqueries to the Signing oracle, it holds that:

Adv[A]: = Prob[A wins the game] $\leq \varepsilon$

The signature is (N, t)-unforgeable under chosen message attacks if for any adversary \mathcal{A} as above, it holds: $Adv[A] \leq negl(1^{\alpha})$

SIMULATION-BASED DEFINITIONS

Game-based definitions

- Well understood and studied
- Can capture attacks up to "one bit of information"
- What else do we need?
- > Zero-Knowledge: "nothing leaks about..."
 - Real world: "real" parties, running protocol in the pre-sence of a "local" adversary
 - Ideal world: "dummy" parties, simulator that formalizes the most leakage allowed from the protocol
 - "Global" adversary: distinguisher real/ideal world if simulator is successful, then real world leaks as much as ideal world

Security Models – Conclusions

> Requirements:

- Realistic models: capture "reality" well, making proofs meaningful
- Precise definitions: allow quantification/classification of attacks, performance comparisons for schemes, generic protocol-construction statements
- Exact models: require subtlety and finesse in definitions, in order to formalize slight relaxations of standard definitions
- Provable security is an art, balancing strong security requirements and security from minimal assumptions

PART V PROOFS OF SECURITY

GAME HOPPING

- > Start from a given security game G_0
- > Modify G_0 a bit (limiting \mathcal{A}) to get G_1
- Show that for protocol π , games G_0 and G_1 are equivalent (under assumption A), up to negligible factor ε_1 :

 $G_0 \cong_{\varepsilon_1} G_1$: Prob[A wins G_0] \leq Prob[A wins G_1] + ε_1

- ▶ Hop through $G_2, G_3, ..., G_n$ (such that $G_{i-1} \cong_{\varepsilon_i} G_i$ for all i)
- > For last game G_n find Prob[A wins G_n]; then:

$$\operatorname{Prob}[A \text{ wins } G_0] \leq \sum_{i=1}^n \varepsilon_i + \operatorname{Prob}[A \text{ wins } G_n]$$

PROVING $G_{i-1} \cong_{\varepsilon_i} G_i$

- Method 1: Reduce game indistinguishability to assumption or hard problem
 - If there exists a distinguisher \mathcal{A} between G_{i-1} and G_i winning with probability $1/2 + \delta$ then there exists an adversary \mathcal{B} against assumption H_1 winning with probability $\delta' = f(\delta)$
 - So, $\operatorname{Prob}[A \text{ wins } G_0] \operatorname{Prob}[A \text{ wins } G_1] \leq \delta + \delta' =: \varepsilon_1$
- Method 2: Reduce "difference" between games to assumption or hard problem
 - By construction, \mathcal{A} can win G_0 more easily than G_1 (since \mathcal{A} is more limited in G_1)
 - If there exists an adversary B that can "take advantage of" the extra ability it has in G_0 to win w.p. Prob[A wins G_1] + δ , then there exists B against H_1 winning w.p. δ' ... (as above)

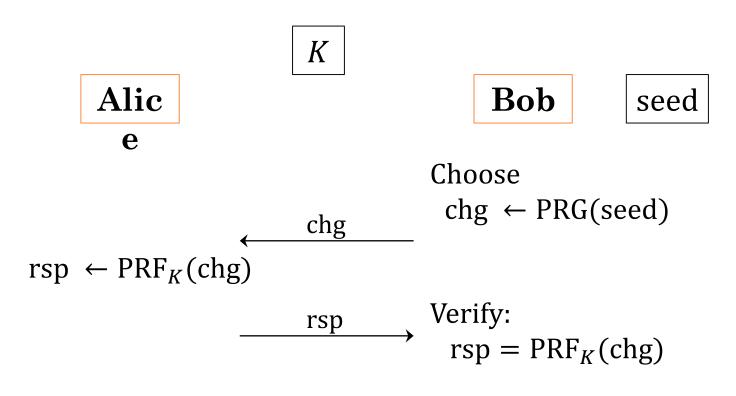
GAME EQUIVALENCE & REDUCTIONS

- Reduction: algorithm *R* taking adversary *A* against a game, outputting adversary **B** against another game/hard problem $\mathcal{R}^{\mathcal{A}} \rightarrow \mathcal{B}$
- Intuition: if there exists an adversary \mathcal{A} against game G, this same adversary can be used by \mathcal{R} to obtain \mathcal{B} against • \mathcal{A}' interacts with challenger \mathcal{A} in G, \mathcal{B} interacts with \mathcal{A}' in G'
- In order to fully use *A*, *B* needs to simulate *C*:
 - \mathcal{A} queries \mathcal{C} in game $G: \mathcal{B}$ must answer query
 - \mathcal{A} sends challenge input to $\mathcal{C}:\mathcal{B}$ must send challenge
 - \mathcal{A} answers challenge: \mathcal{B} uses response in game G'

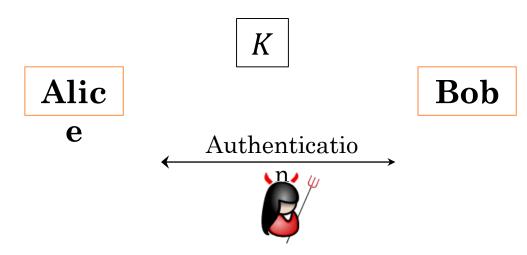
PART VI AN EXAMPLE

SECURE SYMMETRIC-KEY AUTHENTICATION

> Alice wants to authenticate to Bob, with whom she shares a secret key



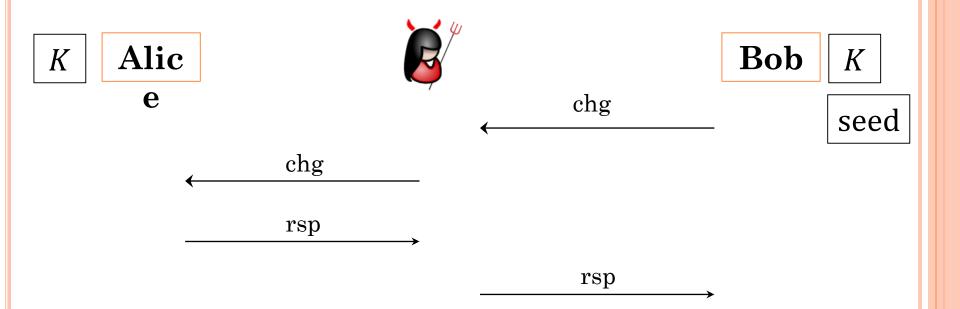
SECURITY OF AUTHENTICATION



Nobody but Alice must authenticate to Bob

- Who is my adversary?
 - A man-in-the-middle
- What can they do?
 - Intercept messages, send messages (to Alice or Bob), eavesdrop
- What is they goal of *A*?
 - \circ Make Bob accept ${\boldsymbol{\mathscr{A}}}$ as being Alice

TRIVIAL ATTACKS: RELAY



- Relay attacks bypass any kind of cryptography: encryption, hashing, signatures, etc.
- Countermeasure: distance bounding (we'll see it later)

SECURE AUTHENTICATION: DEFINITION

- Session ID: tuple < chg, rsp > used between partners
 Oracles:
 - NewSession(*): input either P_1 = Alice or P_2 = Bob outputs session "handle" π
 - Send(*,*): input handle π and message m ∈ M ∪ {Prompt} transmits m to partner in π, outputs m'
 - Result(*): input a handle π with partner P₂ outputs 1 if P₂ accepted authentication in π, 0 if P₂ rejected, and ⊃ otherwise

SECURE AUTHENTICATION: GAME

Game ImpSec:

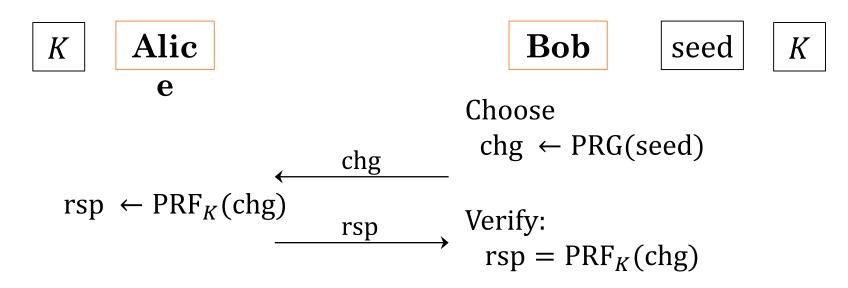
 $k \leftarrow_R \operatorname{KSpace}(1^{\alpha})$ seed $\leftarrow_R \operatorname{SSpace}(1^{\alpha})$ done $\leftarrow A^{\operatorname{NewSession}(*),\operatorname{Send}(*,*),\operatorname{Result}(*)}(1^{\alpha})$

 $\boldsymbol{\mathcal{A}}$ wins iff $\exists \pi$ output by NewSession(P_2) such that:

- Result(π) = 1;
- There exists no π' output by NewSession(P_1) such that $sid(\pi) = sid(\pi')$

▶ Protocol is (N_1, N_2, ε) -impersonation secure iff. no adversary *A* using N_i sessions with P_i wins w.p. ≥ ε . Adv $[A] \coloneqq$ Prob[A wins]

PRGS AND PRFS

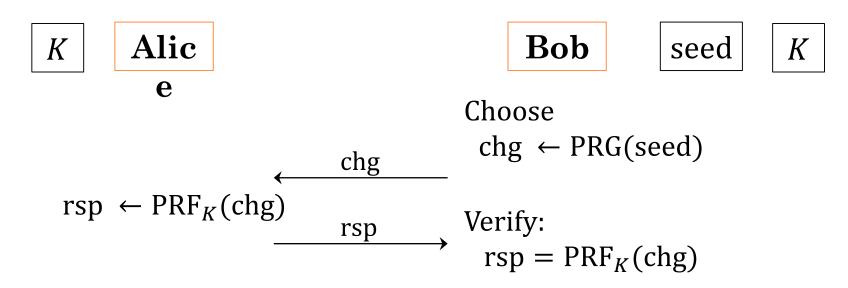


> Pseudorandomness of PRG:

 $key \leftarrow_R Kspace$ $d \leftarrow A^{Eval_b()}$ A wins iff. d = b

Eval_b():
 if b = 0, return Rand()
 else, return PRG(key)

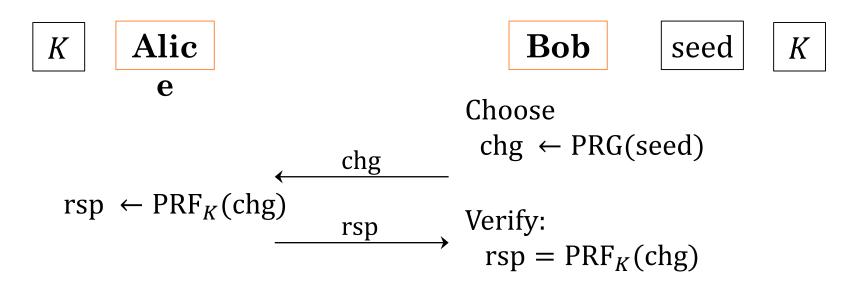
PRGS AND PRFS



> Pseudorandomness of PRF:

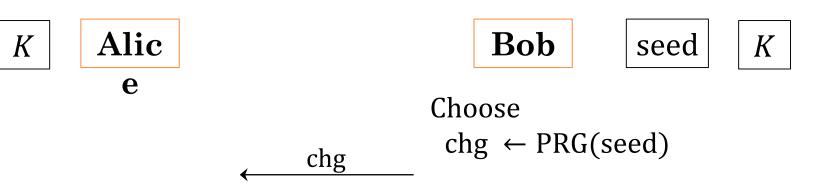
 $key \leftarrow_R Kspace$ $d \leftarrow A^{Eval_b()}$ A wins iff. d = b

Eval_b(): choose $x \leftarrow_R X$ if b = 0, return Rand(x) else, return PRF_{key}(x)



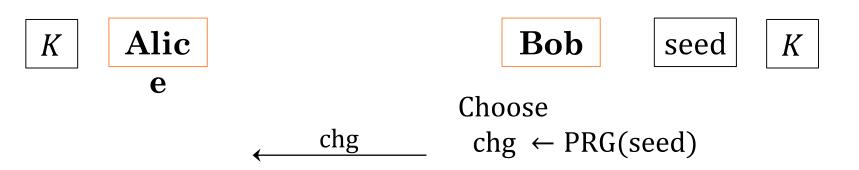
Intuition:

- If the PRG is good, then each chg is (almost) unique (up to collisions)
- If the PRF is good, then each rsp looks random to adversary
- Unless adversary relays, no chance to get right answer



Proof, step 1:

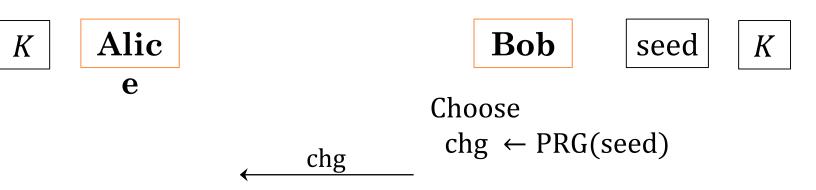
- Game G_0 : Game ImpSec
- Game G_1 : Replace chg output by P_2 by random
- Equivalence: $G_0 \cong G_1$: if there exists ε -distinguisher \mathcal{A} between G_0 and G_1 , then there exists \mathcal{B} against PRG winning w.p. ε
 - Basically the intuition is that if *A* can distinguish between the two games, he can distinguish real (PRG) from truly random challenges



> Proof, equivalence $G_0 \cong G_1$:

- ∃ ε -distinguisher \mathcal{A} for $G_0 / G_1 \Rightarrow \exists \mathcal{B}$ winning PRG w.p. ε
 - Simulation: \mathcal{B} chooses key $K \leftarrow_R KS$ pace and simulate any requests to Send(π , Prompt) by Eval_b() queries in PRG game
 - Finally \mathcal{A} guesses either game G_0 (\mathcal{B} outputs 1) or G_1 (\mathcal{B} outputs 0)

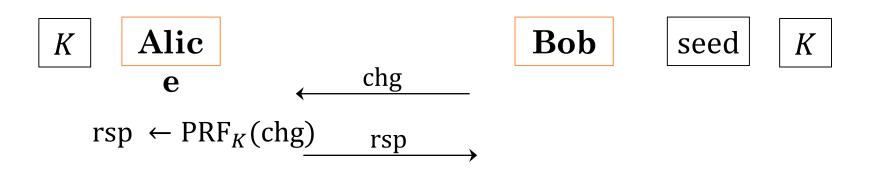
Game PRG
seed \leftarrow_R Kspace
 $d \leftarrow B^{\text{Eval}_b()}$ Eval_b():
if b = 0, return Rand()
else, return PRG(key)B wins iff. d = b



> Proof, step 2:

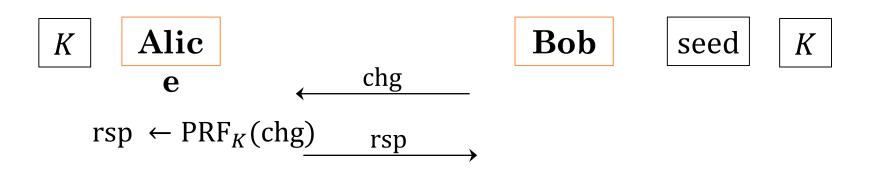
- Game *G*₀: Game ImpSec
- Game G_1 : Replace chg output by P_2 by random
- Game G_2 : Abort if collision in chg
- Equivalence: $G_1 \cong G_2$: collisions in random strings occur in 2 different sessions w.p. $(1/2)^{|chg|}$. But we have a total of N_2 sessions, so the total probability of a collision is:

$$\binom{N_2}{2}$$
 2^{-|chg}



> Proof, step 3:

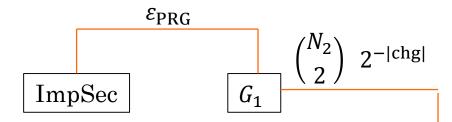
- Game *G*₀: Game ImpSec
- Game G_1 : Replace chg output by P_2 by random
- Game G_2 : Abort if collision in chg
- Game G₃: replace honest responses by consistent, truly random strings
- Equivalence: $G_2 \cong G_3$: Similar to reduction to PRG, only this time it is to the pseudorandomness of the PRF.



Proof, step 4:

- Game *G*₀: Game ImpSec
- Game G_1 : Replace chg output by P_2 by random
- Game G_2 : Abort if collision in chg
- Game G₃: replace honest responses by consistent, truly random strings
- At this point, the best the adversary can do is to guess a correct chg/rsp, i.e. Prob[A wins G_3] = $N_1 \cdot 2^{-|chg|} + N_2 \cdot 2^{-|rsp|}$

PUTTING IT TOGETHER



 $Prob[A wins ImpSec] \leq Prob[A wins G_1] + Adv[B against PRG]$

$$[G_2] \xrightarrow{\mathcal{E}_{PRF}} \mathcal{E}_{Prob}[A \text{ wins } G_2] + \binom{N_2}{2} 2^{-|chg|}$$

$$[G_3]$$

$$[Frob[A \text{ wins } G_2] \leq Prob[A \text{ wins } G_3] + Adv[B \text{ against } PRF]$$

 $Prob[A wins G_3] = N_1 \cdot 2^{-|chg|} + N_2 \cdot 2^{-|rsp|}$

SECURITY STATEMENT

For every (N_1, N_2, ε) - impersonation security adver-sary \mathcal{A} against the protocol, there exist:

- An *\varepsilon_{PRG}*-distinguisher against PRG
- An *\varepsilon_{PRF}*-distinguisher against PRF

such that:

 $\varepsilon \leq \varepsilon_{\text{PRG}} + \varepsilon_{\text{PRF}} + {N_2 \choose 2} 2^{-|chg|} + N_1 \cdot 2^{-|chg|} + N_2 \cdot 2^{-|rsp|}$

PART VII CONCLUSIONS

PROVABLE SECURITY

- Powerful tool
- > We can prove that a protocol is secure by design
- Captures generic attacks within a security model
- Can compare different schemes of same "type"
- > 3 types of schemes:
 - Provably Secure
 - Attackable (found an attack)
 - We don't know (unprovable, but not attackable)